Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 253 - 257
1 Feb 2007
Seel EH Davies EM

We performed a biomechanical study to compare the augmentation of isolated fractured vertebral bodies using two different bone tamps. Compression fractures were created in 21 vertebral bodies harvested from red deer after determining their initial strength and stiffness, which was then assessed after standardised bipedicular vertebral augmentation using a balloon or an expandable polymer bone tamp. The median strength and stiffness of the balloon bone tamp group was 6.71 kN (. sd. 2.71) and 1.885 kN/mm (. sd. 0.340), respectively, versus 7.36 kN (. sd. 3.43) and 1.882 kN/mm (. sd. 0.868) in the polymer bone tamp group. The strength and stiffness tended to be greater in the polymer bone tamp group than in the balloon bone tamp group, but this difference was not statistically significant (strength p > 0.8, and stiffness p = 0.4)


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 692 - 695
1 May 2006
Karataglis D Kapetanos G Lontos A Christodoulou A Christoforides J Pournaras J

The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 271 - 277
1 Feb 2009
Toms AD Barker RL McClelland D Chua L Spencer-Jones R Kuiper J

The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised bone graft is becoming established, particularly in contained defects. It has previously been shown that the initial stability of impaction-grafted trays in the contained defects is equivalent to that of an uncemented primary knee replacement. However, there is little biomechanical evidence on which to base a decision in the treatment of uncontained defects. We undertook a laboratory-based biomechanical study comparing three methods of graft containment in segmental medial tibial defects and compared them with the use of a modular metal augment to bypass the defect. Using resin models of the proximal tibia with medial defects representing either 46% or 65% of the medial cortical rim, repair of the defect was accomplished using mesh, cement or a novel bag technique, after which impaction bone grafting was used to fill the contained defects and a tibial component was cemented in place. As a control, a cemented tibial component with modular metal augments was used in identical defects. All specimens were submitted to cyclical mechanical loading, during which cyclical and permanent tray displacement were determined. The results showed satisfactory stability with all the techniques except the bone bag method. Using metal augments gave the highest initial stability, but obviously lacked any potential for bone restoration


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 351 - 359
1 Mar 1998
Lund T Oxland TR Jost B Cripton P Grassmann S Etter C Nolte L

We performed a biomechanical study on human cadaver spines to determine the effect of three different interbody cage designs, with and without posterior instrumentation, on the three-dimensional flexibility of the spine. Six lumbar functional spinal units for each cage type were subjected to multidirectional flexibility testing in four different configurations: intact, with interbody cages from a posterior approach, with additional posterior instrumentation, and with cross-bracing. The tests involved the application of flexion and extension, bilateral axial rotation and bilateral lateral bending pure moments. The relative movements between the vertebrae were recorded by an optoelectronic camera system. We found no significant difference in the stabilising potential of the three cage designs. The cages used alone significantly decreased the intervertebral movement in flexion and lateral bending, but no stabilisation was achieved in either extension or axial rotation. For all types of cage, the greatest stabilisation in flexion and extension and lateral bending was achieved by the addition of posterior transpedicular instrumentation. The addition of cross-bracing to the posterior instrumentation had a stabilising effect on axial rotation. The bone density of the adjacent vertebral bodies was a significant factor for stabilisation in flexion and extension and in lateral bending


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives

Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain.

Methods

A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 481 - 488
1 Aug 2017
Caruso G Bonomo M Valpiani G Salvatori G Gildone A Lorusso V Massari L

Objectives

Intramedullary fixation is considered the most stable treatment for pertrochanteric fractures of the proximal femur and cut-out is one of the most frequent mechanical complications. In order to determine the role of clinical variables and radiological parameters in predicting the risk of this complication, we analysed the data pertaining to a group of patients recruited over the course of six years.

Methods

A total of 571 patients were included in this study, which analysed the incidence of cut-out in relation to several clinical variables: age; gender; the AO Foundation and Orthopaedic Trauma Association classification system (AO/OTA); type of nail; cervical-diaphyseal angle; surgical wait times; anti-osteoporotic medication; complete post-operative weight bearing; and radiological parameters (namely the lag-screw position with respect to the femoral head, the Cleveland system, the tip-apex distance (TAD), and the calcar-referenced tip-apex distance (CalTAD)).


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 545 - 551
1 Apr 2009
Schnurr C Nessler J Meyer C Schild HH Koebke J König DP

The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck.

We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural neck-shaft angle in the left femur and with a 10° valgus angle on the right. The bone mineral density of each femur was measured and CT was performed. Each femur was evaluated in a materials testing machine using increasing cyclical loads.

In specimens with good bone quality, the 10° valgus placement of the femoral component had a protective effect against fractures of the femoral neck. An adverse effect was detected in osteoporotic specimens.

When resurfacing the hip a valgus position of the femoral component should be achieved in order to prevent fracture of the femoral neck. Patient selection remains absolutely imperative. In borderline cases, measurement of bone mineral density may be indicated.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1171 - 1175
1 Aug 2010
Hajipour L Gulihar A Dias J

We carried out lacerations of 50%, followed by trimming, in ten turkey flexor tendons in vitro and measured the coefficient of friction at the tendon-pulley interface with loads of 200 g and 400 g and in 10°, 30°, 50° and 70° of flexion. Laceration increased the coefficient of friction from 0.12 for the intact tendon to 0.3 at both the test loads. Trimming the laceration reduced the coefficient of friction to 0.2. An exponential increase in the gliding resistance was found at 50° and 70° of flexion (p = 0.02 and p = 0.003, respectively) following trimming compared to that of the intact tendon.

We concluded that trimming partially lacerated flexor tendons will reduce the gliding resistance at the tendon-pulley interface, but will lead to fragmentation and triggering of the tendon at higher degrees of flexion and loading. We recommend that higher degrees of flexion be avoided during early post-operative rehabilitation following trimming of a flexor tendon.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 595 - 601
1 Apr 2010
Kafchitsas K Kokkinakis M Habermann B Rauschmann M

In a study on ten fresh human cadavers we examined the change in the height of the intervertebral disc space, the angle of lordosis and the geometry of the facet joints after insertion of intervertebral total disc replacements. SB III Charité prostheses were inserted at L3-4, L4-5, and L5-S1. The changes studied were measured using computer navigation sofware applied to CT scans before and after instrumentation.

After disc replacement the mean lumbar disc height was doubled (p < 0.001). The mean angle of lordosis and the facet joint space increased by a statistically significant extent (p < 0.005 and p = 0.006, respectively). By contrast, the mean facet joint overlap was significantly reduced (p < 0.001). Our study indicates that the increase in the intervertebral disc height after disc replacement changes the geometry at the facet joints. This may have clinical relevance.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1392 - 1400
1 Oct 2008
Hayashi R Kondo E Tohyama H Saito T Yasuda K

We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks.

The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022).

The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1460 - 1465
1 Oct 2010
Rauh PB Clancy WG Jasper LE Curl LA Belkoff S Moorman CT

We evaluated two reconstruction techniques for a simulated posterolateral corner injury on ten pairs of cadaver knees. Specimens were mounted at 30° and 90° of knee flexion to record external rotation and varus movement. Instability was created by transversely sectioning the lateral collateral ligament at its midpoint and the popliteus tendon was released at the lateral femoral condyle. The left knee was randomly assigned for reconstruction using either a combined or fibula-based treatment with the right knee receiving the other. After sectioning, laxity increased in all the specimens. Each technique restored external rotatory and varus stability at both flexion angles to levels similar to the intact condition. For the fibula-based reconstruction method, varus laxity at 30° of knee flexion did not differ from the intact state, but was significantly less than after the combined method.

Both the fibula-based and combined posterolateral reconstruction techniques are equally effective in restoring stability following the simulated injury.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 737 - 742
1 May 2010
Verlinden C Uvin P Labey L Luyckx JP Bellemans J Vandenneucker H

Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 973 - 976
1 Jul 2009
Kralinger F Unger S Wambacher M Smekal V Schmoelz W

The medial periosteal hinge plays a key role in fractures of the head of the humerus, offering mechanical support during and after reduction and maintaining perfusion of the head by the vessels in the posteromedial periosteum. We have investigated the biomechanical properties of the medial periosteum in fractures of the proximal humerus using a standard model in 20 fresh-frozen cadaver specimens comparable in age, gender and bone mineral density. After creating the fracture, we displaced the humeral head medial or lateral to the shaft with controlled force until complete disruption of the posteromedial periosteum was recorded. As the quality of periosteum might be affected by age and bone quality, the results were correlated with the age and the local bone mineral density of the specimens measured with quantitative CT.

Periosteal rupture started at a mean displacement of 2.96 mm (sd 2.92) with a mean load of 100.9 N (sd 47.1). The mean maximum load of 111.4 N (sd 42.5) was reached at a mean displacement of 4.9 mm (sd 4.2). The periosteum was completely ruptured at a mean displacement of 34.4 mm (sd 11.1). There was no significant difference in the mean distance to complete rupture for medial (mean 35.8 mm (sd 13.8)) or lateral (mean 33.0 mm (sd 8.2)) displacement (p = 0.589).

The mean bone mineral density was 0.111 g/cm3 (sd 0.035). A statistically significant but low correlation between bone mineral density and the maximum load uptake (r = 0.475, p = 0.034) was observed.

This study showed that the posteromedial hinge is a mechanical structure capable of providing support for percutaneous reduction and stabilisation of a fracture by ligamentotaxis. Periosteal rupture started at a mean of about 3 mm and was completed by a mean displacement of just under 35 mm. The microvascular situation of the rupturing periosteum cannot be investigated with the current model.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 103 - 106
1 Jan 2008
Kettler M Tingart MJ Lunger J Kuhn V

Operative fixation is the treatment of choice for a rupture of the distal tendon of biceps. A variety of techniques have been described including transosseous sutures and suture anchors. The poor quality of the bone of the radial tuberosity might affect the load to failure of the tendon repair in early rehabilitation.

The aim of this study was to determine the loads to failure of different techniques of fixation and to investigate their association with the bone mineral density of the radial tuberosity.

Peripheral quantitative computed tomography was carried out to measure the trabecular and cortical bone mineral density of the radial tuberosity in 40 cadaver specimens. The loads to failure in four different techniques of fixation were determined.

The Endobutton-based method showed the highest failure load at 270 N (sd 22) (p < 0.05). The mean failure load of the transosseous suture technique was 210 N (sd 66) and that of the TwinFix-QuickT 5.0 mm was 57 N (sd 22), significantly lower than those of all other repairs (p < 0.05). No significant correlation was seen between bone mineral density and loads to failure.

The transosseous technique is an easy and cost-saving procedure for fixation of the distal biceps tendon. TwinFix-QuickT 5.0 mm had significantly lower failure loads, which might affect early rehabilitation, particularly in older patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 527 - 534
1 Apr 2008
Merican AM Amis AA

Anatomical descriptions of the lateral retinaculum have been published, but the attachments, name or even existence of its tissue bands and layers are ill-defined. We have examined 35 specimens of the knee. The deep fascia is the most superficial layer and the joint capsule is the deepest. The intermediate layer is the most substantial and consists of derivatives of the iliotibial band and the quadriceps aponeurosis. The longitudinal fibres of the iliotibial band merge with those of the quadriceps aponeurosis adjacent to the patella. These longitudinal fibres are reinforced by superficial arciform fibres and on the deep aspect by transverse fibres of the iliotibial band. The latter are dense and provide attachment of the iliotibial band to the patella and the tendon of vastus lateralis obliquus.

Our study identifies two important new findings which are a constant connection of the deep fascia to the quadriceps tendon superior and lateral to the patella, and, a connection of the deeper transverse fibres to the tendon of vastus lateralis obliquus.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1545 - 1550
1 Nov 2007
Koslowsky TC Mader K Dargel J Koebke J Hellmich M Pennig D

We have evaluated four different fixation techniques for the reconstruction of a standard Mason type-III fracture of the radial head in a sawbone model. The outcome measurements were the quality of the reduction, and stability.

A total of 96 fractures was created. Six surgeons were involved in the study and each reconstructed 16 fractures with 1.6 mm fine-threaded wires (Fragment Fixation System (FFS)), T-miniplates, 2 mm miniscrews and 2 mm Kirschner (K-) wires; four fractures being allocated to each method using a standard reconstruction procedure.

The quality of the reduction was measured after definitive fixation. Biomechanical testing was performed using a transverse plane shear load in two directions to the implants (parallel and perpendicular) with respect to ultimate failure load and displacement at 50 N.

A significantly better quality of reduction was achieved using the FFS wires (Tukey’s post hoc tests, p < 0.001) than with the other devices with a mean step in the articular surface and the radial neck of 1.04 mm (sd 0.96) for the FFS, 4.25 mm (sd 1.29) for the miniplates, 2.21 mm (sd 1.06) for the miniscrews and 2.54 mm (sd 0.98) for the K-wires. The quality of reduction was similar for K-wires and miniscrews, but poor for miniplates.

The ultimate failure load was similar for the FFS wires (parallel, 196.8 N (sd 46.8), perpendicular, 212.5 N (sd 25.6)), miniscrews (parallel, 211.8 N (sd 47.9), perpendicular, 208.0 N (sd 65.9)) and K-wires (parallel, 200.4 N (sd 54.5), perpendicular, 165.2 N (sd 37.9)), but significantly worse (Tukey’s post hoc tests, p < 0.001) for the miniplates (parallel, 101.6 N (sd 43.1), perpendicular, 122.7 N (sd 40.7)). There was a significant difference in the displacement at 50 N for the miniplate (parallel, 4.8 mm (sd 2.8), perpendicular, 4.8 mm (sd 1.7)) vs FFS (parallel, 2.1 mm (sd 0.8), perpendicular, 1.9 mm (sd 0.7)), miniscrews (parallel, 1.8 mm (sd 0.5), perpendicular, 2.3 mm (sd 0.8)) and K-wires (parallel, 2.2 mm (sd 1.8), perpendicular, 2.4 mm (sd 0.7; Tukey’s post hoc tests, p < 0.001)).

The fixation of a standard Mason type-III fracture in a sawbone model using the FFS system provides a better quality of reduction than that when using conventional techniques. There was a significantly better stability using FFS implants, miniscrews and K-wires than when using miniplates.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1105 - 1109
1 Aug 2006
Kandemir U Allaire RB Jolly JT Debski RE McMahon PJ

Our aim was to determine the most repeatable three-dimensional measurement of glenoid orientation and to compare it between shoulders with intact and torn rotator cuffs. Our null hypothesis was that glenoid orientation in the scapulae of shoulders with a full-thickness tear of the rotator cuff was the same as that in shoulders with an intact rotator cuff.

We studied 24 shoulders in cadavers, 12 with an intact rotator cuff and 12 with a full-thickness tear. Two different observers used a three-dimensional digitising system to measure glenoid orientation in the scapular plane (ie glenoid inclination) using six different techniques. Glenoid version was also measured. The overall precision of the measurements revealed an error of less than 0.6°.

Intraobserver reliability (correlation coefficients of 0.990 and 0.984 for each observer) and interobserver reliability (correlation coefficient of 0.985) were highest for measurement of glenoid inclination based on the angle obtained from a line connecting the superior and inferior points of the glenoid and that connecting the most superior point of the glenoid and the most superior point on the body of the scapula. There were no differences in glenoid inclination (p = 0.34) or glenoid version (p = 0.12) in scapulae from shoulders with an intact rotator cuff and those with a full-thickness tear. Abnormal glenoid orientation was not present in shoulders with a torn rotator cuff.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 962 - 970
1 Jul 2007
Albert C Patil S Frei H Masri B Duncan C Oxland T Fernlund G

This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting.

Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured.

Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum.

The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting.