Advertisement for orthosearch.org.uk
Results 1 - 50 of 108
Results per page:
Bone & Joint Research
Vol. 12, Issue 2 | Pages 147 - 154
20 Feb 2023
Jia Y Qi X Ma M Cheng S Cheng B Liang C Guo X Zhang F

Aims. Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. Methods. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects. Results. Through discovery and replication integrative analysis for BMD GWAS and rSNP annotation database, we identified 36 common BMD-associated genes for BMD irrespective of regulatory elements, such as FAM3C (p. discovery GWAS. = 1.21 × 10. -25. , p. replication GWAS. = 1.80 × 10. -12. ), CCDC170 (p. discovery GWAS. = 1.23 × 10. -11. , p. replication GWAS. = 3.22 × 10. -9. ), and SOX6 (p. discovery GWAS. = 4.41 × 10. -15. , p. replication GWAS. = 6.57 × 10. -14. ). Then, for the 36 common target genes, multiple gene ontology (GO) terms were detected for BMD such as positive regulation of cartilage development (p = 9.27 × 10. -3. ) and positive regulation of chondrocyte differentiation (p = 9.27 × 10. -3. ). Conclusion. We explored the potential roles of rSNP in the genetic mechanisms of BMD and identified multiple candidate genes. Our study results support the implication of regulatory genetic variants in the development of OP. Cite this article: Bone Joint Res 2023;12(2):147–154


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1593 - 1603
1 Dec 2015
Cool P Ockendon M

Plots are an elegant and effective way to represent data. At their best they encourage the reader and promote comprehension. A graphical representation can give a far more intuitive feel to the pattern of results in the study than a list of numerical data, or the result of a statistical calculation.

The temptation to exaggerate differences or relationships between variables by using broken axes, overlaid axes, or inconsistent scaling between plots should be avoided.

A plot should be self-explanatory and not complicated. It should make good use of the available space. The axes should be scaled appropriately and labelled with an appropriate dimension.

Plots are recognised statistical methods of presenting data and usually require specialised statistical software to create them. The statistical analysis and methods to generate the plots are as important as the methodology of the study itself. The software, including dates and version numbers, as well as statistical tests should be appropriately referenced.

Following some of the guidance provided in this article will enhance a manuscript.

Cite this article: Bone Joint J 2015;97-B:1593–1603.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims. This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Methods. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization. Results. A total of 46 genes were obtained from the intersection of significantly upregulated genes in osteoarthritic cartilage and the key module genes screened by WGCNA. Functional annotation analysis revealed that these genes were closely related to pathological responses associated with OA, such as inflammation and immunity. Four key dysregulated genes (cartilage acidic protein 1 (CRTAC1), iodothyronine deiodinase 2 (DIO2), angiopoietin-related protein 2 (ANGPTL2), and MAGE family member D1 (MAGED1)) were identified after using machine-learning algorithms. These genes had high diagnostic value in both the training cohort and external validation cohort (receiver operating characteristic > 0.8). The upregulated expression of these hub genes in osteoarthritic cartilage signified higher levels of immune infiltration as well as the expression of metalloproteinases and mineralization markers, suggesting harmful biological alterations and indicating that these hub genes play an important role in the pathogenesis of OA. A competing endogenous RNA network was constructed to reveal the underlying post-transcriptional regulatory mechanisms. Conclusion. The current study explores and validates a dysregulated key gene set in osteoarthritic cartilage that is capable of accurately diagnosing OA and characterizing the biological alterations in osteoarthritic cartilage; this may become a promising indicator in clinical decision-making. This study indicates that dysregulated key genes play an important role in the development and progression of OA, and may be potential therapeutic targets. Cite this article: Bone Joint Res 2024;13(2):66–82


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims. Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Methods. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis. Results. The TWAS detected 420 DCS genes with p < 0.05 in skeletal muscle, such as ribosomal protein S15A (RPS15A) (PTWAS = 0.001), and 110 genes in whole blood, such as selectin L (SELL) (PTWAS = 0.001). Comparison with the DCS RNA expression profile identified 12 common genes, including Apelin Receptor (APLNR) (PTWAS = 0.001, PDEG = 0.025). In total, 148 DCS-enriched Gene Ontology (GO) terms were identified, such as mast cell degranulation (GO:0043303); 15 DCS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, such as the sphingolipid signalling pathway (ko04071). Nine terms, such as degradation of the extracellular matrix (R-HSA-1474228), were common to the TWAS enrichment results and the RNA expression profile. Conclusion. Our results identify putative susceptibility genes; these findings provide new ideas for exploration of the genetic mechanism of DCS development and new targets for preclinical intervention and clinical treatment. Cite this article: Bone Joint Res 2023;12(1):80–90


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 525 - 531
1 Jun 2024
MacDessi SJ van de Graaf VA Wood JA Griffiths-Jones W Bellemans J Chen DB

The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases. Cite this article: Bone Joint J 2024;106-B(6):525–531


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 593 - 601
1 Jun 2023
Scott CEH Yapp LZ Howard T Patton JT Moran M

Periprosthetic femoral fractures are increasing in incidence, and typically occur in frail elderly patients. They are similar to pathological fractures in many ways. The aims of treatment are the same, including 'getting it right first time' with a single operation, which allows immediate unrestricted weightbearing, with a low risk of complications, and one that avoids the creation of stress risers locally that may predispose to further peri-implant fracture. The surgical approach to these fractures, the associated soft-tissue handling, and exposure of the fracture are key elements in minimizing the high rate of complications. This annotation describes the approaches to the femur that can be used to facilitate the surgical management of peri- and interprosthetic fractures of the femur at all levels using either modern methods of fixation or revision arthroplasty. Cite this article: Bone Joint J 2023;105-B(6):593–601


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1329 - 1333
1 Dec 2022
Renfree KJ

This annotation reviews current concepts on the three most common surgical approaches used for proximal interphalangeal joint arthroplasty: dorsal, volar, and lateral. Advantages and disadvantages of each are highlighted, and the outcomes are discussed. Cite this article: Bone Joint J 2022;104-B(12):1329–1333


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims. The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results. A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After annotation, LC-MS identified significant expressions of ten upregulated and eight downregulated second-level metabolites, and 183 upregulated and 162 downregulated first-level metabolites between KBD and OA. We identified differentially expressed second-level metabolites that are highly associated with cartilage damage, including dimethyl sulfoxide, uric acid, and betaine. These metabolites exist in sulphur metabolism, purine metabolism, and glycine, serine, and threonine metabolism. Conclusion. This comprehensive comparative analysis of metabolism in OA and KBD cartilage provides new evidence of differences in the pathogenetic mechanisms underlying cartilage damage in these two conditions. Cite this article: Bone Joint Res 2024;13(7):362–371


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 109 - 111
1 Feb 2023
Karjalainen T Buchbinder R

Tennis elbow (lateral epicondylitis or lateral elbow tendinopathy) is a self-limiting condition in most patients. Surgery is often offered to patients who fail to improve with conservative treatment. However, there is no evidence to support the superiority of surgery over continued nonoperative care or no treatment. New evidence also suggests that the prognosis of tennis elbow is not influenced by the duration of symptoms, and that there is a 50% probability of recovery every three to four months. This finding challenges the belief that failed nonoperative care is an indication for surgery. In this annotation, we discuss the clinical and research implications of the benign clinical course of tennis elbow. Cite this article: Bone Joint J 2023;105-B(2):109–111


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes. Cite this article: Bone Joint J 2023;105-B(2):102–108


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims. This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). Methods. The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions. Results. A total of 56 EP-DEGs were identified in the differential expression analysis. EP-DEGs were enriched in the extracellular structure organization, ageing, collagen-activated signalling pathway, PI3K-Akt signalling pathway, and AGE-RAGE signalling pathway. PPI network analysis showed that the top ten hub EP-DEGs are closely related to IDD. Correlation analysis also demonstrated a significant correlation between the ten hub EP-DEGs (p<0.05), which were selected to construct TF–gene interaction and TF–miRNA coregulatory networks. In addition, ten candidate drugs were screened for the treatment of IDD. Conclusion. The findings clarify the roles of extracellular proteins in IDD and highlight their potential as promising novel therapeutic targets. Cite this article: Bone Joint Res 2023;12(9):522–535


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 11 - 16
1 Jan 2023
San-Julián M Gómez-Álvarez J Idoate MÁ Aquerreta JD Vázquez-García B Lamo-Espinosa JM

Paediatric bone sarcomas are a dual challenge for orthopaedic surgeons in terms of tumour resection and reconstruction, as it is important to minimize functional and growth problems without compromising survival rates. Cañadell’s technique consists of a Type I epiphysiolysis performed using continuous distraction by an external fixator prior to resection. It was designed to achieve a safe margin due to the ability of the physeal cartilage to be a barrier to tumour spread in some situations, avoiding the need for articular reconstruction, and preserving the growth capacity most of the times. Despite initial doubts raised in the scientific community, this technique is now widely used in many countries for the treatment of metaphyseal paediatric bone sarcomas. This annotation highlights the importance of Cañadell’s work and reviews the experience of applying it to bone sarcoma patients over the last 40 years. Cite this article: Bone Joint J 2023;105-B(1):11–16


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 723 - 728
1 Jul 2023
Raj RD Fontalis A Grandhi TSP Kim WJ Gabr A Haddad FS

There is a disparity in sport-related injuries between sexes, with females sustaining non-contact musculoskeletal injuries at a higher rate. Anterior cruciate ligament ruptures are between two and eight times more common than in males, and females also have a higher incidence of ankle sprains, patellofemoral pain, and bone stress injuries. The sequelae of such injuries can be devastating to an athlete, resulting in time out of sport, surgery, and the early onset of osteoarthritis. It is important to identify the causes of this disparity and introduce prevention programmes to reduce the incidence of these injuries. A natural difference reflects the effect of reproductive hormones in females, which have receptors in certain musculoskeletal tissues. Relaxin increases ligamentous laxity. Oestrogen decreases the synthesis of collagen and progesterone does the opposite. Insufficient diet and intensive training can lead to menstrual irregularities, which are common in female athletes and result in injury, whereas oral contraception may have a protective effect against certain injuries. It is important for coaches, physiotherapists, nutritionists, doctors, and athletes to be aware of these issues and to implement preventive measures. This annotation explores the relationship between the menstrual cycle and orthopaedic sports injuries in pre-menopausal females, and proposes recommendations to mitigate the risk of sustaining these injuries. Cite this article: Bone Joint J 2023;105-B(7):723–728


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1011 - 1016
1 Sep 2022
Acem I van de Sande MAJ

Prediction tools are instruments which are commonly used to estimate the prognosis in oncology and facilitate clinical decision-making in a more personalized manner. Their popularity is shown by the increasing numbers of prediction tools, which have been described in the medical literature. Many of these tools have been shown to be useful in the field of soft-tissue sarcoma of the extremities (eSTS). In this annotation, we aim to provide an overview of the available prediction tools for eSTS, provide an approach for clinicians to evaluate the performance and usefulness of the available tools for their own patients, and discuss their possible applications in the management of patients with an eSTS. Cite this article: Bone Joint J 2022;104-B(9):1011–1016


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 347 - 355
15 Mar 2023
Birch NC Cheung JPY Takenaka S El Masri WS

Initial treatment of traumatic spinal cord injury remains as controversial in 2023 as it was in the early 19th century, when Sir Astley Cooper and Sir Charles Bell debated the merits or otherwise of surgery to relieve cord compression. There has been a lack of high-class evidence for early surgery, despite which expeditious intervention has become the surgical norm. This evidence deficit has been progressively addressed in the last decade and more modern statistical methods have been used to clarify some of the issues, which is demonstrated by the results of the SCI-POEM trial. However, there has never been a properly conducted trial of surgery versus active conservative care. As a result, it is still not known whether early surgery or active physiological management of the unstable injured spinal cord offers the better chance for recovery. Surgeons who care for patients with traumatic spinal cord injuries in the acute setting should be aware of the arguments on all sides of the debate, a summary of which this annotation presents. Cite this article: Bone Joint J 2023;105-B(4):347–355


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 532 - 540
2 May 2022
Martin H Robinson PG Maempel JF Hamilton D Gaston P Safran MR Murray IR

There has been a marked increase in the number of hip arthroscopies performed over the past 16 years, primarily in the management of femoroacetabular impingement (FAI). Insights into the pathoanatomy of FAI, and high-level evidence supporting the clinical effectiveness of arthroscopy in the management of FAI, have fuelled this trend. Arthroscopic management of labral tears with repair may have superior results compared with debridement, and there is now emerging evidence to support reconstructive options where repair is not possible. In situations where an interportal capsulotomy is performed to facilitate access, data now support closure of the capsule in selective cases where there is an increased risk of postoperative instability. Preoperative planning is an integral component of bony corrective surgery in FAI, and this has evolved to include computer-planned resection. However, the benefit of this remains controversial. Hip instability is now widely accepted, and diagnostic criteria and treatment are becoming increasingly refined. Instability can also be present with FAI or develop as a result of FAI treatment. In this annotation, we outline major current controversies relating to decision-making in hip arthroscopy for FAI. Cite this article: Bone Joint J 2022;104-B(5):532–540


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1284 - 1291
1 Dec 2022
Rose PS

Tumours of the sacrum are difficult to manage. The sacrum provides the structural connection between the torso and lower half of the body and is subject to both axial and rotational forces. Thus, tumours or their treatment can compromise the stability of the spinopelvic junction. Additionally, nerves responsible for lower limb motor groups as well as bowel, bladder, and sexual function traverse or abut the sacrum. Preservation or sacrifice of these nerves in the treatment of sacral tumours has profound implications on the function and quality of life of the patient. This annotation will discuss current treatment protocols for sacral tumours. Cite this article: Bone Joint J 2022;104-B(12):1284–1291


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 17 - 20
1 Jan 2023
Petrou S Png ME Metcalfe D

Economic evaluation provides a framework for assessing the costs and consequences of alternative programmes or interventions. One common vehicle for economic evaluations in the healthcare context is the decision-analytic model, which synthesizes information on parameter inputs (for example, probabilities or costs of clinical events or health states) from multiple sources and requires application of mathematical techniques, usually within a software program. A plethora of decision-analytic modelling-based economic evaluations of orthopaedic interventions have been published in recent years. This annotation outlines a number of issues that can help readers, reviewers, and decision-makers interpret evidence from decision-analytic modelling-based economic evaluations of orthopaedic interventions. Cite this article: Bone Joint J 2023;105-B(1):17–20


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 5 - 10
1 Jan 2023
Crowe CS Kakar S

Injury to the triangular fibrocartilage complex (TFCC) may result in ulnar wrist pain with or without instability. One component of the TFCC, the radioulnar ligaments, serve as the primary soft-tissue stabilizer of the distal radioulnar joint (DRUJ). Tears or avulsions of its proximal, foveal attachment are thought to be associated with instability of the DRUJ, most noticed during loaded pronosupination. In the absence of detectable instability, injury of the foveal insertion of the radioulnar ligaments may be overlooked. While advanced imaging techniques such as MRI and radiocarpal arthroscopy are well-suited for diagnosing central and distal TFCC tears, partial and complete foveal tears without instability may be missed without a high degree of suspicion. While technically challenging, DRUJ arthroscopy provides the most accurate method of detecting foveal abnormalities. In this annotation the spectrum of foveal injuries is discussed and a modified classification scheme is proposed. Cite this article: Bone Joint J 2023;105-B(1):5–10


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1193 - 1195
1 Nov 2022
Rajput V Meek RMD Haddad FS

Periprosthetic joint infection (PJI) remains an extremely challenging complication. We have focused on this issue more over the last decade than previously, but there are still many unanswered questions. We now have a workable definition that everyone should align to, but we need to continue to focus on identifying the organisms involved. Surgical strategies are evolving and care is becoming more patient-centred. There are some good studies under way. There are, however, still numerous problems to resolve, and the challenge of PJI remains a major one for the orthopaedic community. This annotation provides some up-to-date thoughts about where we are, and the way forward. There is still scope for plenty of research in this area. Cite this article: Bone Joint J 2022;104-B(11):1193–1195


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 887 - 891
1 Sep 2024
Whyte W Thomas AM

The critical relationship between airborne microbiological contamination in an operating theatre and surgical site infection (SSI) is well known. The aim of this annotation is to explain the scientific basis of using settle plates to audit the quality of air, and to provide information about the practicalities of using them for the purposes of clinical audit. The microbiological quality of the air in most guidance is defined by volumetric sampling, but this method is difficult for surgical departments to use on a routine basis. Settle plate sampling, which mimics the mechanism of deposition of airborne microbes onto open wounds and sterile instruments, is a good alternative method of assessing the quality of the air. Current practice is not to sample the air in an operating theatre during surgery, but to rely on testing the engineering systems which deliver the clean air. This is, however, not good practice and microbiological testing should be carried out routinely during operations as part of clinical audit. Cite this article: Bone Joint J 2024;106-B(9):887–891


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1135 - 1139
1 Nov 2023
Young SW Chen W Clarke HD Spangehl MJ

Prophylactic antibiotics are important in reducing the risk of periprosthetic joint infection (PJI) following total knee arthroplasty. Their effectiveness depends on the choice of antibiotic and the optimum timing of their administration, to ensure adequate tissue concentrations. Cephalosporins are typically used, but an increasing number of resistant organisms are causing PJI, leading to the additional use of vancomycin. There are difficulties, however, with the systemic administration of vancomycin including its optimal timing, due to the need for prolonged administration, and potential adverse reactions. Intraosseous regional administration distal to a tourniquet is an alternative and attractive mode of delivery due to the ease of obtaining intraosseous access. Many authors have reported the effectiveness of intraosseous prophylaxis in achieving higher concentrations of antibiotic in the tissues compared with intravenous administration, providing equal or enhanced prophylaxis while minimizing adverse effects. This annotation describes the technique of intraosseous administration of antibiotics and summarizes the relevant clinical literature to date. Cite this article: Bone Joint J 2023;105-B(11):1135–1139


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 481 - 486
1 May 2023
Scott CEH Jain S Moran M Haddad FS

The Unified Classification System (UCS), or Vancouver system, is a validated and widely used classification system to guide the management of periprosthetic femoral fractures. It suggests that well-fixed stems (type B1) can be treated with fixation but that loose stems (types B2 and B3) should be revised. Determining whether a stem is loose can be difficult and some authors have questioned how to apply this classification system to polished taper slip stems which are, by definition, loose within their cement mantle. Recent evidence has challenged the common perception that revision surgery is preferable to fixation surgery for UCS-B periprosthetic fractures around cemented polished taper slip stems. Indications for fixation include an anatomically reducible fracture and cement mantle, a well-fixed femoral bone-cement interface, and a well-functioning acetabular component. However, not all type B fractures can or should be managed with fixation due to the risk of early failure. This annotation details specific fracture patterns that should not be managed with fixation alone. Cite this article: Bone Joint J 2023;105-B(5):481–486


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 114 - 120
1 Feb 2024
Khatri C Metcalfe A Wall P Underwood M Haddad FS Davis ET

Total hip and knee arthroplasty (THA, TKA) are largely successful procedures; however, both have variable outcomes, resulting in some patients being dissatisfied with the outcome. Surgeons are turning to technologies such as robotic-assisted surgery in an attempt to improve outcomes. Robust studies are needed to find out if these innovations are really benefitting patients. The Robotic Arthroplasty Clinical and Cost Effectiveness Randomised Controlled Trials (RACER) trials are multicentre, patient-blinded randomized controlled trials. The patients have primary osteoarthritis of the hip or knee. The operation is Mako-assisted THA or TKA and the control groups have operations using conventional instruments. The primary clinical outcome is the Forgotten Joint Score at 12 months, and there is a built-in analysis of cost-effectiveness. Secondary outcomes include early pain, the alignment of the components, and medium- to long-term outcomes. This annotation outlines the need to assess these technologies and discusses the design and challenges when conducting such trials, including surgical workflows, isolating the effect of the operation, blinding, and assessing the learning curve. Finally, the future of robotic surgery is discussed, including the need to contemporaneously introduce and evaluate such technologies. Cite this article: Bone Joint J 2024;106-B(2):114–120


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 911 - 914
1 Aug 2022
Prijs J Liao Z Ashkani-Esfahani S Olczak J Gordon M Jayakumar P Jutte PC Jaarsma RL IJpma FFA Doornberg JN

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’). Cite this article: Bone Joint J 2022;104-B(8):911–914


Bone & Joint Research
Vol. 9, Issue 3 | Pages 130 - 138
1 Mar 2020
Qi X Yu F Wen Y Li P Cheng B Ma M Cheng S Zhang L Liang C Liu L Zhang F

Aims. Osteoarthritis (OA) is the most prevalent joint disease. However, the specific and definitive genetic mechanisms of OA are still unclear. Methods. Tissue-related transcriptome-wide association studies (TWAS) of hip OA and knee OA were performed utilizing the genome-wide association study (GWAS) data of hip OA and knee OA (including 2,396 hospital-diagnosed hip OA patients versus 9,593 controls, and 4,462 hospital-diagnosed knee OA patients versus 17,885 controls) and gene expression reference to skeletal muscle and blood. The OA-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the messenger RNA (mRNA) expression profiles of hip OA and knee OA. Functional enrichment and annotation analysis of identified genes was performed by the DAVID and FUMAGWAS tools. Results. We detected 33 common genes, eight common gene ontology (GO) terms, and one common pathway for hip OA, such as calcium and integrin-binding protein 1 (CIB1) (PTWAS = 0.025, FCmRNA = -1.575 for skeletal muscle), adrenomedullin (ADM) (PTWAS = 0.022, FCmRNA = -4.644 for blood), Golgi apparatus (PTWAS <0.001, PmRNA = 0.012 for blood), and phosphatidylinositol 3' -kinase-protein kinase B (PI3K-Akt) signalling pathway (PTWAS = 0.033, PmRNA = 0.005 for blood). For knee OA, we detected 24 common genes, eight common GO terms, and two common pathways, such as histocompatibility complex, class II, DR beta 1 (HLA-DRB1) (PTWAS = 0.040, FCmRNA = 4.062 for skeletal muscle), Follistatin-like 1 (FSTL1) (PTWAS = 0.048, FCmRNA = 3.000 for blood), cytoplasm (PTWAS < 0.001, PmRNA = 0.005 for blood), and complement and coagulation cascades (PTWAS = 0.017, PmRNA = 0.001 for skeletal muscle). Conclusion. We identified a group of OA-associated genes and pathways, providing novel clues for understanding the genetic mechanism of OA. Cite this article:Bone Joint Res. 2020;9(3):130–138


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 148 - 154
1 Feb 2020
Murray IR Chahla J Frank RM Piuzzi NS Mandelbaum BR Dragoo JL

Cell therapies hold significant promise for the treatment of injured or diseased musculoskeletal tissues. However, despite advances in research, there is growing concern about the increasing number of clinical centres around the world that are making unwarranted claims or are performing risky biological procedures. Such providers have been known to recommend, prescribe, or deliver so called ‘stem cell’ preparations without sufficient data to support their true content and efficacy. In this annotation, we outline the current environment of stem cell-based treatments and the strategies of marketing directly to consumers. We also outline the difficulties in the regulation of these clinics and make recommendations for best practice and the identification and reporting of illegitimate providers. Cite this article: Bone Joint J 2020;102-B(2):148–154


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 566 - 569
1 May 2018
White TO

The posterior malleolus of the ankle is the object of increasing attention, with considerable enthusiasm for CT scanning and surgical fixation, as expressed in a recent annotation in The Bone & Joint Journal. Undoubtedly, fractures with a large posterior malleolar fragment that allow posterior talar subluxation from the mortise are served better by fixation. However, in all other situations, the existing literature does not support this widespread change in practice. The available biomechanical evidence shows that the posterior malleolus has little part to play in the stability or contact stresses of the ankle joint. Radiographic studies have not shown that CT scanning offers helpful information on pathoanatomical classification, case selection, or prognosis, or that scanning improves the likelihood of an adequate surgical reduction. Clinical studies have not shown any improvement in patient outcome after surgical fixation, and have confirmed that the inevitable consequence of increased intervention is an increased rate of complications. A careful and thoughtful evaluation of indications, risks, and benefits of this fashionable concept is required to ensure that we are deploying valuable resources with efficacy, and that we do no harm. Cite this article: Bone Joint J 2018;100-B:566–9


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 891 - 896
1 Aug 2019
Rossi LA Murray IR Chu CR Muschler GF Rodeo SA Piuzzi NS

There is good scientific rationale to support the use of growth factors to promote musculoskeletal tissue regeneration. However, the clinical effectiveness of platelet-rich plasma (PRP) and other blood-derived products has yet to be proven. Characterization and reporting of PRP preparation protocols utilized in clinical trials for the treatment of musculoskeletal disease is highly inconsistent, and the majority of studies do not provide sufficient information to allow the protocols to be reproduced. Furthermore, the reporting of blood-derived products in orthopaedics is limited by the multiple PRP classification systems available, which makes comparison of results between studies challenging. Several attempts have been made to characterize and classify PRP; however, no consensus has been reached, and there is lack of a comprehensive and validated classification. In this annotation, we outline existing systems used to classify preparations of PRP, highlighting their advantages and limitations. There remains a need for standardized universal nomenclature to describe biological therapies, as well as a comprehensive and reproducible classification system for autologous blood-derived products. Cite this article: Bone Joint J 2019;101-B:891–896


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1476 - 1478
1 Dec 2019
Bayliss L Jones LD

This annotation briefly reviews the history of artificial intelligence and machine learning in health care and orthopaedics, and considers the role it will have in the future, particularly with reference to statistical analyses involving large datasets. Cite this article: Bone Joint J 2019;101-B:1476–1478


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim. Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage. Patients and Methods. Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Results. We identified 1265 differentially methylated genes, of which 145 are associated with significant changes in gene expression, such as DLX5, NCOR2 and AXIN2 (all p-values of both DNA methylation and mRNA expression < 0.05). Pathway enrichment analysis identified 26 OA-associated pathways, such as mitogen-activated protein kinase (MAPK) signalling pathway (p = 6.25 × 10-4), phosphatidylinositol (PI) signalling system (p = 4.38 × 10-3), hypoxia-inducible factor 1 (HIF-1) signalling pathway (p = 8.63 × 10-3 pantothenate and coenzyme A (CoA) biosynthesis (p = 0.017), ErbB signalling pathway (p = 0.024), inositol phosphate (IP) metabolism (p = 0.025), and calcium signalling pathway (p = 0.032). Conclusion. We identified a group of genes and biological pathwayswhich were significantly different in both DNA methylation and mRNA expression profiles between patients with OA and controls. These results may provide new clues for clarifying the mechanisms involved in the development of OA. Cite this article: A. He, Y. Ning, Y. Wen, Y. Cai, K. Xu, Y. Cai, J. Han, L. Liu, Y. Du, X. Liang, P. Li, Q. Fan, J. Hao, X. Wang, X. Guo, T. Ma, F. Zhang. Use of integrative epigenetic and mRNA expression analyses to identify significantly changed genes and functional pathways in osteoarthritic cartilage. Bone Joint Res 2018;7:343–350. DOI: 10.1302/2046-3758.75.BJR-2017-0284.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 280 - 287
1 Mar 2008
Gwilym SE Pollard TCB Carr AJ

The majority of patients with osteoarthritis present to orthopaedic surgeons seeking relief of pain and associated restoration of function. Although our understanding of the physiology of pain has improved greatly over the last 25 years there remain a number of unexplained pain-related observations in patients with osteoarthritis. The understanding of pain in osteoarthritis, its modulation and treatment is central to orthopaedic clinical practice and in this annotation we explore some of the current concepts applicable. We also introduce the concept of the ‘phantom joint’ as a cause for persistent pain after joint replacement


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 884 - 886
1 Sep 2024
Brown R Bendall S Aronow M Ramasamy A


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 430 - 434
1 May 2024
Eardley WGP


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses. Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure. In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future. Cite this article: Bone Joint J 2014;96-B:291–8


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity.

Cite this article: Bone Joint J 2024;106-B(4):312–318.


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims

Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease.

Methods

We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1050 - 1058
1 Oct 2024
Holleyman RJ Jameson SS Meek RMD Khanduja V Reed MR Judge A Board TN

Aims

This study evaluates the association between consultant and hospital volume and the risk of re-revision and 90-day mortality following first-time revision of primary hip arthroplasty for aseptic loosening.

Methods

We conducted a cohort study of first-time, single-stage revision hip arthroplasties (RHAs) performed for aseptic loosening and recorded in the National Joint Registry (NJR) data for England, Wales, Northern Ireland, and the Isle of Man between 2003 and 2019. Patient identifiers were used to link records to national mortality data, and to NJR data to identify subsequent re-revision procedures. Multivariable Cox proportional hazard models with restricted cubic splines were used to define associations between volume and outcome.


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1060 - 1069
1 Oct 2023
Holleyman RJ Jameson SS Reed M Meek RMD Khanduja V Hamer A Judge A Board T

Aims

This study describes the variation in the annual volumes of revision hip arthroplasty (RHA) undertaken by consultant surgeons nationally, and the rate of accrual of RHA and corresponding primary hip arthroplasty (PHA) volume for new consultants entering practice.

Methods

National Joint Registry (NJR) data for England, Wales, Northern Ireland, and the Isle of Man were received for 84,816 RHAs and 818,979 PHAs recorded between April 2011 and December 2019. RHA data comprised all revision procedures, including first-time revisions of PHA and any subsequent re-revisions recorded in public and private healthcare organizations. Annual procedure volumes undertaken by the responsible consultant surgeon in the 12 months prior to every index procedure were determined. We identified a cohort of ‘new’ HA consultants who commenced practice from 2012 and describe their rate of accrual of PHA and RHA experience.


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 1 - 2
1 Jan 2023
Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 1 - 2
1 Jan 2024
Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 341 - 342
15 Mar 2023
Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1199 - 1202
1 Nov 2024
Watts AC Tennent TD Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 227 - 229
1 Mar 2023
Theologis T Brady MA Hartshorn S Faust SN Offiah AC

Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a diagnostic challenge: children with transient synovitis can safely be sent home, but children with bone and joint infection require urgent treatment to avoid complications. Clinicians often respond to this challenge by using a series of rudimentary decision support tools, based on clinical, haematological, and biochemical parameters, to differentiate childhood osteoarticular infection from other diagnoses. However, these tools were developed without methodological expertise in diagnostic accuracy and do not consider the importance of imaging (ultrasound scan and MRI). There is wide variation in clinical practice with regard to the indications, choice, sequence, and timing of imaging. This variation is most likely due to the lack of evidence concerning the role of imaging in acute bone and joint infection in children. We describe the first steps of a large UK multicentre study, funded by the National Institute for Health Research, which seeks to integrate definitively the role of imaging into a decision support tool, developed with the assistance of individuals with expertise in the development of clinical prediction tools.

Cite this article: Bone Joint J 2023;105-B(3):227–229.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1039 - 1043
1 Oct 2024
Luo TD Kayani B Magan A Haddad FS

The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise.

Cite this article: Bone Joint J 2024;106-B(10):1039–1043.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims

We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism.

Methods

Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims

The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model.

Methods

In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 657 - 666
17 Oct 2023
Sung J Barratt KR Pederson SM Chenu C Reichert I Atkins GJ Anderson PH Smitham PJ

Aims

Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy.

Methods

Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq).