Objectives. Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts
We performed biopsies during reoperation for minor complications in two active
Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing. The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.Aims
Methods
We used fresh small-fragment osteochondral allografts to reconstruct post-traumatic osteochondral defects in 126 knees of 123 patients with a mean age of 35 years. At a mean follow-up of 7.5 years (2 to 20), 108 knees were rated as successful (85%) and 18 had failed (15%). The factors related to failure included age over 50 years (p = 0.008), bipolar defects (p <
0.05), malaligned knees with overstressing of the grafts, and workers’ compensation cases (p <
0.04). Collapse of the graft by more than 3 mm and of the joint space of more than 50% were seen more frequently in radiographs of failed grafts. Our encouraging clinical results for fresh small-fragment osteochondral allografts show that they are indicated for unipolar post-traumatic osteochondral defects of the knee in
To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention. The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the Objectives
Materials and Methods
Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis.Objectives
Methods
Acetabular retractors have been implicated in damage to the femoral
and obturator nerves during total hip replacement. The aim of this
study was to determine the anatomical relationship between retractor
placement and these nerves. A posterior approach to the hip was carried out in six fresh
cadaveric half pelves. Large Hohmann acetabular retractors were
placed anteriorly, over the acetabular lip, and inferiorly, and
their relationship to the femoral and obturator nerves was examined.Objectives
Methods
Our study aimed to examine not only the incidence but also the
impact of noise from two types of total hip replacement articulations:
ceramic-on-ceramic and ceramic-on-polyethylene. We performed a case-controlled study comparing subjective and
objective questionnaire scores of patients receiving a ceramic-on-ceramic
or a ceramic-on-polyethylene total hip replacement by a single surgeon.Objectives
Methods
Post-mortem retrieval of canine, cemented femoral components was analysed to assess the performance of these implants in the dog as a model for human total hip replacement (THR). Mechanical testing and radiological analysis were performed to determine the stability of the implant and the quality of the cement. Thirty-eight implants from 29 dogs were retrieved after time intervals ranging from 0.67 to 11.67 years. The incidence of aseptic loosening was 63.2%, much higher than in human patients (6% in post-mortem studies). Failure of the femoral implants began with debonding at the cement-metal interface, similar to that in implants in man. The incidence of aseptic loosening was much lower in bilateral than in unilateral implants. Significant differences were observed for three different designs of implant. While the dog remains the animal model of choice for THR, results from this study provide insight into interspecies differences in the performance of implants. For example, the performance of THR in dogs should be compared with that in young rather than in elderly human patients.
A cadaver study using six pairs of lower limbs was conducted to investigate the accuracy of computer navigation and standard instrumentation for the placement of the Birmingham Hip Resurfacing femoral component. The aim was to place all the femoral components with a stem-shaft angle of 135°. The mean stem-shaft angle obtained in the standard instrumentation group was 127.7° (120° to 132°), compared with 133.3° (131° to 139°) in the computer navigation group (p = 0.03). The scatter obtained with computer-assisted navigation was approximately half that found using the conventional jig. Computer navigation was more accurate and more consistent in its placement of the femoral component than standard instrumentation. We suggest that image-free computer-assisted navigation may have an application in aligning the femoral component during hip resurfacing.
Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied. It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation.
Studies on the migration of an implant may be the only way of monitoring the early performance of metal-on-metal prostheses. The Ein Bild Roentgen Analyse - femoral component analysis (EBRA-FCA) method was adapted to measure migration of the femoral component in a metal-on-metal surface arthroplasty of the hip using standard antero-posterior radiographs. In order to determine the accuracy and precision of this method a prosthesis was implanted into cadaver bones. Eleven series of radiographs were used to perform a zero-migration study. After adjustment of the femoral component to simulate migration of 3 mm the radiographs were repeated. All were measured independently by three different observers. The accuracy of the method was found to be ± 1.6 mm for the x-direction and ± 2 mm for the y-direction (95% percentile). The method was validated using 28 hips with a minimum follow-up of 3.5 years after arthroplasty. Seventeen were sound, but 11 had failed because of loosening of the femoral component. The normal (control) group had a different pattern of migration compared with that of the loose group. At 29.2 months, the control group showed a mean migration of 1.62 mm and 1.05 mm compared with 4.39 mm and 4.05 mm in the failed group, for the centre of the head and the tip of the stem, respectively (p = 0.001). In the failed group, the mean time to migration greater than 2 mm was earlier than the onset of clinical symptoms or radiological evidence of failure, 19.1 EBRA-FCA is a reliable and valid tool for measuring migration of the femoral component after surface arthroplasty and can be used to predict early failure of the implant. It may be of value in determining the long-term performance of surface arthroplasty.
This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting. Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured. Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum. The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting.
Acetabular dysplasia was produced in 24 immature white rabbits. A rotational acetabular osteotomy was then carried out and radiological and histological studies of the articular cartilage were made. In the hips which did not undergo osteotomy, radiographs at 26 weeks showed that residual subluxation remained and arthritic changes such as narrowing of the joint space or dislocation were still seen. However, in the operated group there was a remarkable increase in cover, but arthritic changes were not observed. After 24 weeks, the Mankin grading score in the operated group was significantly lower than that in the non-operated group. The latter hips showed an irregular surface of the cartilage, exfoliation and proliferation of synovial tissue. In those undergoing osteotomy, primary cloning of chondrocytes or hypercellularity was seen and at 24 weeks after operation and metaplasia of the cartilage in the fibrous tissue was observed in the boundary between the medial area of the acetabulum and the acetabular fossa.
Previous research has shown an increase in chromosomal aberrations in patients with worn implants. The type of aberration depended on the type of metal alloy in the prosthesis. We have investigated the metal-specific difference in the level of DNA damage (DNA stand breaks and alkali labile sites) induced by culturing human fibroblasts in synovial fluid retrieved at revision arthroplasty. All six samples from revision cobalt-chromium metal-on-metal and four of six samples from cobalt-chromium metal-on-polyethylene prostheses caused DNA damage. By contrast, none of six samples from revision stainless-steel metal-on-polyethylene prostheses caused significant damage. Samples of cobalt-chromium alloy left to corrode in phosphate-buffered saline also caused DNA damage and this depended on a synergistic effect between the cobalt and chromium ions. Our results further emphasise that epidemiological studies of orthopaedic implants should take account of the type of metal alloy used.