Advertisement for orthosearch.org.uk
Results 1 - 50 of 286
Results per page:
Bone & Joint Research
Vol. 9, Issue 8 | Pages 493 - 500
1 Aug 2020
Fletcher JWA Zderic I Gueorguiev B Richards RG Gill HS Whitehouse MR Preatoni E

Aims. To devise a method to quantify and optimize tightness when inserting cortical screws, based on bone characterization and screw geometry. Methods. Cortical human cadaveric diaphyseal tibiae screw holes (n = 20) underwent destructive testing to firstly establish the relationship between cortical thickness and experimental stripping torque (T. str. ), and secondly to calibrate an equation to predict T. str. Using the equation’s predictions, 3.5 mm screws were inserted (n = 66) to targeted torques representing 40% to 100% of T. str. , with recording of compression generated during tightening. Once the target torque had been achieved, immediate pullout testing was performed. Results. Cortical thickness predicted T. str. (R. 2. = 0.862; p < 0.001) as did an equation based on tensile yield stress, bone-screw friction coefficient, and screw geometries (R. 2. = 0.894; p < 0.001). Compression increased with screw tightness up to 80% of the maximum (R. 2. = 0.495; p < 0.001). Beyond 80%, further tightening generated no increase in compression. Pullout force did not change with variations in submaximal tightness beyond 40% of T. str. (R. 2. = 0.014; p = 0.175). Conclusion. Screw tightening between 70% and 80% of the predicted maximum generated optimum compression and pullout forces. Further tightening did not considerably increase compression, made no difference to pullout, and increased the risk of the screw holes being stripped. While further work is needed for development of intraoperative methods for accurate and reliable prediction of the maximum tightness for a screw, this work justifies insertion torque being considerably below the maximum. Cite this article: Bone Joint Res 2020;9(8):493–500


Bone & Joint Research
Vol. 11, Issue 5 | Pages 270 - 277
6 May 2022
Takegami Y Seki T Osawa Y Imagama S

Aims. Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems. Methods. We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes. Results. There was a significant difference in fracture torque between the three stem types (p = 0.036). Particularly, the median fracture torque for the CPT stem was significantly lower than that for the CMK stem (CPT vs CMK: 164.5 Nm vs 200.5 Nm; p = 0.046). The strain values for the CPT stem were higher than those for the other two stems at the most proximal site. The fracture pattern of the CPT and Versys stems was Vancouver type B, whereas that of the CMK stem was type C. Conclusion. Our study suggested that the cobalt-chromium alloy material, polished surface finish, acute-square proximal form, and the absence of a collar may be associated with lower fracture torque, which may be related to PPF. Cite this article: Bone Joint Res 2022;11(5):270–277


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 463 - 472
1 Apr 2015
Panagiotidou A Meswania J Osman K Bolland B Latham J Skinner J Haddad FS Hart A Blunn G

The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt–chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. Cite this article: Bone Joint J 2015;97-B:463–72


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 855 - 858
1 Jul 2009
Wroblewski BM Siney PD Fleming PA

The design of the Charnley total hip replacement follows the principle of low frictional torque. It is based on the largest possible difference between the radius of the femoral head and that of the outer aspect of the acetabular component. The aim is to protect the bone-cement interface by movement taking place at the smaller radius, the articulation. This is achieved in clinical practice by a 22.225 mm diameter head articulating with a 40 mm or 43 mm diameter acetabular component of ultra-high molecular weight polyethylene. We compared the incidence of aseptic loosening of acetabular components with an outer diameter of 40 mm and 43 mm at comparable depths of penetration with a mean follow-up of 17 years (1 to 40). In cases with no measurable wear none of the acetabular components were loose. With increasing acetabular penetration there was an increased incidence of aseptic loosening which reflected the difference in the external radii, with 1.5% at 1 mm, 8.8% at 2 mm, 9.7% at 3 mm and 9.6% at 4 mm of penetration in favour of the larger 43 mm acetabular component. Our findings support the Charnley principle of low frictional torque. The level of the benefit is in keeping with the predicted values


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 93 - 97
1 Jan 2012
Lee JH Lee J Park JW Shin YH

In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 447 - 450
1 Apr 2009
Wroblewski BM Siney PD Fleming PA

Of the 11 054 Charnley low-frictional torque arthroplasties carried out at our hospital between 1962 and 1977, 110 (94 patients) had a minimum follow-up of 30 years with a mean of 32.3 years (30.0 to 40.5). The mean age of the patients at operation was 43.3 years (17.0 to 65.0) and 75.7 years (51.0 to 97.0) at follow-up. Overall, 90% of hips (99) were free from pain and activity was reported as normal in 58% of the patients. A total of 13 hips (11.8%) were revised at a mean follow-up of 32.3 years (30.0 to 39.5), with wear and loosening of the acetabular component as the main indications. The clinical results did not reflect the mechanical state of the implant. Follow-up with sequential radiographs of good quality is essential. Revision for radiological changes alone must be accepted if gross loss of bone stock is to be avoided. Improvements in the design, materials and operative technique, based on the long-term outcome, are highlighted


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 540 - 543
1 May 2002
Wroblewski BM Siney PD Fleming PA

Between November 1962 and December1990 a group of 1092 patients, 668 women and 424 men, under the age of 51 years at the time of surgery, underwent 1434 primary Charnley low-frictional torque arthroplasties and are being followed up indefinitely. Their mean age at operation was 41 years (12 to 51). At the latest review in June 2001 the mean follow-up had been for 15 years 1 month. Of the 1092 patients 54 (66 hips) could not be traced, 124 (169 hips) were known to have died and 220 (248 hips) had had a revision procedure. At a mean follow-up of 17 years and 5 months, 759 patients (951 hips) are still attending. In this group satisfaction with the outcome is 96.2%. The incidence of deep infection for the whole group was 1.67%. It was more common in patients who had had previous surgery (hemi- and total hip arthroplasties excluded), 2.2% compared with 1.5% in those who had not had previous surgery, but this difference was not statistically significant (p = 0.4). There were fewer cases of deep infection if gentamicin-containing cement was used, 0.9% compared with 1.9% in those with plain acrylic cement, but this was not also statistically significant (p = 0.4). There was a significantly higher rate of revision in patients who had had previous hip surgery, 24.8% compared with 14.1% in those who had not had previous surgery (p < 0.001). At the latest review, 1.95% are known to have had at least one dislocation and 0.4% have had a revision for dislocation. The indication for revision was aseptic loosening of the cup (11.7%), aseptic loosening of the stem (4.9%), a fractured stem (1.7%), deep infection (1.5%) and dislocation (0.4%). With revision for any indication as the endpoint the survivorship was 93.7% (92.3 to 95.0) at ten years, 84.7% (82.4 to 87.1) at 15 years, 74.3% (70.5 to 78.0) at 20 years and 55.3% (45.5 to 65.0) at 27 years, when 55 hips remained ‘at risk’


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 427 - 430
1 May 1999
Wroblewski BM Fleming PA Siney PD

We reviewed 261 patients with 320 Charnley low-friction arthroplasties who had a mean follow-up of 22 years 10 months (20 to 30). Of these, 93.9% considered the operation to be a success; 82.3% were free from pain and 11.6% had occasional discomfort. Satisfactory function was achieved in 59.6% and 62% had an excellent range of movement.

The clinical results did not correlate well with the radiological appearance; radiologically loose components did not affect the clinical outcome. The main long-term problem was wear and loosening of the UHMWPE cup. Our findings suggest that the radiological appearance of the arthroplasty is a more reliable indication of the state of the arthroplasty than the clinical results.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 59 - 66
1 Mar 2024
Karunaseelan KJ Nasser R Jeffers JRT Cobb JP

Aims. Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA. Methods. Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators. Results. Following initial exposure, the ischiofemoral ligament (7 to 8 o’clock) was the largest restrictor of exposure of the acetabulum, contributing to a mean 25% of overall external rotational restraint. The ischiofemoral ligament (10 to 12 o’clock) was the largest restrictor of exposure of the proximal femur, contributing to 25% of overall extension restraint. Releasing the short external rotators had minimal contribution in torque generated during joint exposure (≤ 5%). Conclusion. Adequate exposure of both proximal femur and acetabulum may be achieved with minimal torque by performing a full proximal circumferential capsulotomy while preserving short external rotators. The joint torque generated and exposure achieved is dependent on patient factors; therefore, some cases may necessitate further releases. Cite this article: Bone Joint J 2024;106-B(3 Supple A):59–66


Bone & Joint Research
Vol. 9, Issue 10 | Pages 645 - 652
5 Oct 2020
Chao C Chen Y Lin J

Aims. To determine whether half-threaded screw holes in a new titanium locking plate design can substantially decrease the notch effects of the threads and increase the plate fatigue life. Methods. Three types (I to III) of titanium locking plates were fabricated to simulate plates used in the femur, tibia, and forearm. Two copies of each were fabricated using full- and half-threaded screw holes (called A and B, respectively). The mechanical strengths of the plates were evaluated according to the American Society for Testing and Materials (ASTM) F382-14, and the screw stability was assessed by measuring the screw removal torque and bending strength. Results. The B plates had fatigue lives 11- to 16-times higher than those of the A plates. Before cyclic loading, the screw removal torques were all higher than the insertion torques. However, after cyclic loading, the removal torques were similar to or slightly lower than the insertion torques (0% to 17.3%), although those of the B plates were higher than those of the A plates for all except the type III plates (101%, 109.8%, and 93.8% for types I, II, and III, respectively). The bending strengths of the screws were not significantly different between the A and B plates for any of the types. Conclusion. Removing half of the threads from the screw holes markedly increased the fatigue life of the locking plates while preserving the tightness of the screw heads and the bending strength of the locking screws. However, future work is necessary to determine the relationship between the notch sensitivity properties and titanium plate design. Cite this article: Bone Joint Res 2020;9(10):645–652


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion. The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional environment to overcome the deficits of current artificial bone graft substitutes. Cite this article: Bone Joint Res 2023;12(12):722–733


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims. It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. Methods. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound. Results. The median sound pressure (SP) of successful fixation at 0.5 to 1.0 kHz was higher than that of unsuccessful fixation (0.0694 (interquartile range (IQR) 0.04721 to 0.09576) vs 0.05425 (IQR 0.03047 to 0.06803), p < 0.001). The median SP of successful fixation at 3.5 to 4.0 kHz and 4.0 to 4.5 kHz was lower than that of unsuccessful fixation (0.0812 (IQR 0.05631 to 0.01161) vs 0.1233 (IQR 0.0730 to 0.1449), p < 0.001; and 0.0891 (IQR 0.0526 to 0.0891) vs 0.0885 (IQR 0.0716 to 0.1048); p < 0.001, respectively). There was a statistically significant positive relationship between body weight and SP at 0.5 to 1.0 kHz (p < 0.001). Multivariate analyses indicated that the SP at 0.5 to 1.0 kHz and 3.5 to 4.0 kHz was independently associated with the successful fixation. Conclusion. The frequency bands of 0.5 to 1.0 and 3.5 to 4.0 kHz were the key to distinguish the sound characteristics between successful and unsuccessful press-fit cup fixation. Cite this article: Bone Jt Open 2024;5(3):154–161


Bone & Joint Open
Vol. 4, Issue 3 | Pages 154 - 161
28 Mar 2023
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims. It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. Methods. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound. Results. The median sound pressure (SP) of successful fixation at 0.5 to 1.0 kHz was higher than that of unsuccessful fixation (0.0694 (interquartile range (IQR) 0.04721 to 0.09576) vs 0.05425 (IQR 0.03047 to 0.06803), p < 0.001). The median SP of successful fixation at 3.5 to 4.0 kHz and 4.0 to 4.5 kHz was lower than that of unsuccessful fixation (0.0812 (IQR 0.05631 to 0.01161) vs 0.1233 (IQR 0.0730 to 0.1449), p < 0.001; and 0.0891 (IQR 0.0526 to 0.0891) vs 0.0885 (IQR 0.0716 to 0.1048); p < 0.001, respectively). There was a statistically significant positive relationship between body weight and SP at 0.5 to 1.0 kHz (p < 0.001). Multivariate analyses indicated that the SP at 0.5 to 1.0 kHz and 3.5 to 4.0 kHz was independently associated with the successful fixation. Conclusion. The frequency bands of 0.5 to 1.0 and 3.5 to 4.0 kHz were the key to distinguish the sound characteristics between successful and unsuccessful press-fit cup fixation. Cite this article: Bone Jt Open 2024;4(3):154–161


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results. Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion. Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1524 - 1532
1 Nov 2018
Angélico ACC Garcia LM Icuma TR Herrero CF Maranho DA

Aims. The aims of this study were to evaluate the abductor function in moderate and severe slipped capital femoral epiphysis (SCFE), comparing the results of a corrective osteotomy at the base of the femoral neck and osteoplasty with 1) in situ epiphysiodesis for mild SCFE, 2) contralateral unaffected hips, and 3) hips from healthy individuals. Patients and Methods. A total of 24 patients (mean age 14.9 years (. sd. 1.6); 17 male and seven female patients) with moderate or severe SCFE (28 hips) underwent base of neck osteotomy and osteoplasty between 2012 and 2015. In situ epiphysiodesis was performed in seven contralateral hips with mild slip. A control cohort was composed of 15 healthy individuals (mean age 16.5 years (. sd. 2.5); six male and nine female patients). The abductor function was assessed using isokinetic dynamometry and range of abduction, with a minimum one-year follow-up. Results. We found no differences in mean peak abductor torque between the hips that underwent osteotomy and those that received in situ epiphysiodesis (p = 0.63), but the torque was inferior in comparison with contralateral hips without a slip (p < 0.01) and hips from control individuals (p < 0.001). The abduction strength was positively correlated with the range of hip abduction (R = 0.36; p < 0.001). Conclusion. Although the abductor strength was not restored to normal levels, moderate and severe SCFE treated with osteotomy at the base of the femoral neck and osteoplasty showed abductor function similar to in situ epiphysiodesis in hips with less severe displacement. Cite this article: Bone Joint J 2018;100-B:1524–32


Bone & Joint Research
Vol. 7, Issue 12 | Pages 629 - 635
1 Dec 2018
Hung L Chao C Huang J Lin J

Objectives. Screw plugs have been reported to increase the fatigue strength of stainless steel locking plates. The objective of this study was to examine and compare this effect between stainless steel and titanium locking plates. Methods. Custom-designed locking plates with identical structures were fabricated from stainless steel and a titanium alloy. Three types of plates were compared: type I unplugged plates; type II plugged plates with a 4 Nm torque; and type III plugged plates with a 12 Nm torque. The stiffness, yield strength, and fatigue strength of the plates were investigated through a four-point bending test. Failure analyses were performed subsequently. Results. For stainless steel, type II and type III plates had significantly higher fatigue strength than type I plates. For titanium, there were no significant differences between the fatigue strengths of the three types of plates. Failure analyses showed local plastic deformations at the threads of screw plugs in type II and type III stainless steel plates but not in titanium plates. Conclusion. The screw plugs could increase the fatigue strength of stainless steel plates but not of titanium plates. Therefore, leaving screw holes open around fracture sites is recommended in titanium plates. Cite this article: L-W. Hung, C-K. Chao, J-R. Huang, J. Lin. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates. Bone Joint Res 2018;7:629–635. DOI: 10.1302/2046-3758.712.BJR-2018-0083.R1


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 87 - 93
1 Jan 2017
Lawrence JE Nasr P Fountain DM Berman L Robinson AHN

Aims. This prospective cohort study aims to determine if the size of the tendon gap following acute rupture of the Achilles tendon shows an association with the functional outcome following non-operative treatment. . Patients and Methods. All patients presenting within two weeks of an acute unilateral rupture of the Achilles tendon between July 2012 and July 2015 were considered for the study. In total, 38 patients (nine female, 29 male, mean age 52 years; 29 to 78) completed the study. Dynamic ultrasound examination was performed to confirm the diagnosis and measure the gap between ruptured tendon ends. Outcome was assessed using dynamometric testing of plantarflexion and the Achilles tendon Total Rupture score (ATRS) six months after the completion of a rehabilitation programme. Results. Patients with a gap ≥ 10 mm with the ankle in the neutral position had significantly greater peak torque deficit than those with gaps < 10 mm (mean 23.3%; 7% to 52% vs 14.3%; 0% to 47%, p = 0.023). However, there was no difference in ATRS between the two groups (mean score 87.2; 74 to 100 vs 87.4; 68 to 97, p = 0.467). There was no significant correlation between gap size and torque deficit (τ = 0.103), suggesting a non-linear relationship. There was also no significant correlation between ATRS and peak torque deficit (τ = -0.305). . Conclusion . This is the first study to identify an association between tendon gap and functional outcome in acute rupture of the Achilles tendon. We have identified 10 mm as a gap size at which deficits in plantarflexion strength become significantly greater, however, the precise relationship between gap size and plantarflexion strength remains unclear. Large, multicentre studies will be needed to clarify this relationship and identify population subgroups in whom deficits in peak torque are reflected in patient-reported outcome measures. . Cite this article: Bone Joint J 2017;99-B:87–93


Bone & Joint Research
Vol. 5, Issue 4 | Pages 122 - 129
1 Apr 2016
Small SR Rogge RD Malinzak RA Reyes EM Cook PL Farley KA Ritter MA

Objectives. Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. Methods. Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques. Results. Rotational malalignment between femoral and tibial components generated 40% less overall tibial tray micromotion in RP designs than in standard fixed bearing tibial trays. RP trays reduced micromotion by up to 172 µm in axial compression and 84 µm in rotational malalignment models. Conclusions. Reduced torque transfer at the tibiofemoral interface in RP tibial trays reduces relative component micromotion and may aid long-term stability in cases of revision TKA or poor bone quality. Cite this article: Mr S. R. Small. Micromotion at the tibial plateau in primary and revision total knee arthroplasty: fixed versus rotating platform designs. Bone Joint Res 2016;5:122–129. DOI: 10.1302/2046-3758.54.2000481


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims. The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). Methods. At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays. Results. A total of 114 explanted fixed-bearing TKAs were examined. This included 76 used with contemporary PE inserts which were compared with 15 used with older generation PEs. The Attune and NexGen (central locking) trays were found to have significantly less cement cover than Triathlon and PFC trays (peripheral locking group) (p = 0.001). The median planicity values of the PE inserts used with central locking trays were significantly greater than of those with peripheral locking inserts (205 vs 85 microns; p < 0.001). Attune and NexGen inserts had a characteristic pattern of backside deformation, with the outer edges of the PE deviating inferiorly, leaving the PE margins as the primary areas of articulation. Conclusion. Explanted TKAs with central locking mechanisms were significantly more likely to debond from the cement mantle. The PE inserts of these designs showed characteristic patterns of deformation, which appeared to relate to the manufacturing process and may be exacerbated in vivo. This pattern of deformation was associated with PE wear occurring at the outer edges of the articulation, potentially increasing the frictional torque generated at this interface. Cite this article: Bone Joint J 2021;103-B(12):1791–1801


Bone & Joint Research
Vol. 9, Issue 12 | Pages 840 - 847
1 Dec 2020
Nie S Li M Ji H Li Z Li W Zhang H Licheng Z Tang P

Aims. Restoration of proximal medial femoral support is the keystone in the treatment of intertrochanteric fractures. None of the available implants are effective in constructing the medial femoral support. Medial sustainable nail (MSN-II) is a novel cephalomedullary nail designed for this. In this study, biomechanical difference between MSN-II and proximal femoral nail anti-rotation (PFNA-II) was compared to determine whether or not MSN-II can effectively reconstruct the medial femoral support. Methods. A total of 36 synthetic femur models with simulated intertrochanteric fractures without medial support (AO/OTA 31-A2.3) were assigned to two groups with 18 specimens each for stabilization with MSN-II or PFNA-II. Each group was further divided into three subgroups of six specimens according to different experimental conditions respectively as follows: axial loading test; static torsional test; and cyclic loading test. Results. The mean axial stiffness, vertical displacement, and maximum failure load of MSN-II were 258.47 N/mm (SD 42.27), 2.99 mm (SD 0.56), and 4,886 N (SD 525.31), respectively, while those of PFNA-II were 170.28 N/mm (SD 64.63), 4.86 mm (SD 1.66), and 3,870.87 N (SD 552.21), respectively. The mean torsional stiffness and failure torque of MSN-II were 1.72 N m/° (SD 0.61) and 16.54 N m (SD 7.06), respectively, while those of PFNA-II were 0.61 N m/° (SD 0.39) and 6.6 N m (SD 6.65), respectively. The displacement of MSN-II in each cycle point was less than that of PFNA-II in cyclic loading test. Significantly higher stiffness and less displacement were detected in the MSN-II group (p < 0.05). Conclusion. The biomechanical performance of MSN-II was better than that of PFNA-II, suggesting that MSN-II may provide more effective mechanical support in the treatment of unstable intertrochanteric fractures. Cite this article: Bone Joint Res 2020;9(12):840–847


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 484 - 491
1 Apr 2015
van Arkel RJ Amis AA Cobb JP Jeffers JRT

In this in vitro study of the hip joint we examined which soft tissues act as primary and secondary passive rotational restraints when the hip joint is functionally loaded. A total of nine cadaveric left hips were mounted in a testing rig that allowed the application of forces, torques and rotations in all six degrees of freedom. The hip was rotated throughout a complete range of movement (ROM) and the contributions of the iliofemoral (medial and lateral arms), pubofemoral and ischiofemoral ligaments and the ligamentum teres to rotational restraint was determined by resecting a ligament and measuring the reduced torque required to achieve the same angular position as before resection. The contribution from the acetabular labrum was also measured. Each of the capsular ligaments acted as the primary hip rotation restraint somewhere within the complete ROM, and the ligamentum teres acted as a secondary restraint in high flexion, adduction and external rotation. The iliofemoral lateral arm and the ischiofemoral ligaments were primary restraints in two-thirds of the positions tested. Appreciation of the importance of these structures in preventing excessive hip rotation and subsequent impingement/instability may be relevant for surgeons undertaking both hip joint preserving surgery and hip arthroplasty. Cite this article: Bone Joint J 2015; 97-B:484–91


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 141 - 144
1 Jan 2015
Hughes AW Clark D Carlino W Gosling O Spencer RF

Reported rates of dislocation in hip hemiarthroplasty (HA) for the treatment of intra-capsular fractures of the hip, range between 1% and 10%. HA is frequently performed through a direct lateral surgical approach. The aim of this study is to determine the contribution of the anterior capsule to the stability of a cemented HA through a direct lateral approach. . A total of five whole-body cadavers were thawed at room temperature, providing ten hip joints for investigation. A Thompson HA was cemented in place via a direct lateral approach. The cadavers were then positioned supine, both knee joints were disarticulated and a digital torque wrench was attached to the femur using a circular frame with three half pins. The wrench applied an external rotation force with the hip in extension to allow the hip to dislocate anteriorly. Each hip was dislocated twice; once with a capsular repair and once without repairing the capsule. Stratified sampling ensured the order in which this was performed was alternated for the paired hips on each cadaver. . Comparing peak torque force in hips with the capsule repaired and peak torque force in hips without repair of the capsule, revealed a significant difference between the ‘capsule repaired’ (mean 22.96 Nm, standard deviation (. sd. ) 4.61) and the ‘capsule not repaired’ group (mean 5.6 Nm, . sd. 2.81) (p < 0.001). Capsular repair may help reduce the risk of hip dislocation following HA. Cite this article: Bone Joint J 2015;97-B:141–4


Bone & Joint Research
Vol. 1, Issue 6 | Pages 118 - 124
1 Jun 2012
Grawe B Le T Williamson S Archdeacon A Zardiackas L

Objectives. We aimed to further evaluate the biomechanical characteristics of two locking screws versus three standard bicortical screws in synthetic models of normal and osteoporotic bone. Methods. Synthetic tubular bone models representing normal bone density and osteoporotic bone density were used. Artificial fracture gaps of 1 cm were created in each specimen before fixation with one of two constructs: 1) two locking screws using a five-hole locking compression plate (LCP) plate; or 2) three non-locking screws with a seven-hole LCP plate across each side of the fracture gap. The stiffness, maximum displacement, mode of failure and number of cycles to failure were recorded under progressive cyclic torsional and eccentric axial loading. Results. Locking plates in normal bone survived 10% fewer cycles to failure during cyclic axial loading, but there was no significant difference in maximum displacement or failure load. Locking plates in osteoporotic bone showed less displacement (p = 0.02), but no significant difference in number of cycles to failure or failure load during cyclic axial loading (p = 0.46 and p = 0.25, respectively). Locking plates in normal bone had lower stiffness and torque during torsion testing (both p = 0.03), but there was no significant difference in rotation (angular displacement) (p = 0.84). Locking plates in osteoporotic bone showed lower torque and rotation (p = 0.008), but there was no significant difference in stiffness during torsion testing (p = 0.69). Conclusions. The mechanical performance of locking plate constructs, using only two screws, is comparable to three non-locking screw constructs in osteoporotic bone. Normal bone loaded with either an axial or torsional moment showed slightly better performance with the non-locking construct


Bone & Joint Research
Vol. 1, Issue 6 | Pages 104 - 110
1 Jun 2012
Swinteck BJ Phan DL Jani J Owen JR Wayne JS Mounasamy V

Objectives. The use of two implants to manage concomitant ipsilateral femoral shaft and proximal femoral fractures has been indicated, but no studies address the relationship of dynamic hip screw (DHS) side plate screws and the intramedullary nail where failure might occur after union. This study compares different implant configurations in order to investigate bridging the gap between the distal DHS and tip of the intramedullary nail. Methods. A total of 29 left synthetic femora were tested in three groups: 1) gapped short nail (GSN); 2) unicortical short nail (USN), differing from GSN by the use of two unicortical bridging screws; and 3) bicortical long nail (BLN), with two angled bicortical and one unicortical bridging screws. With these findings, five matched-pairs of cadaveric femora were tested in two groups: 1) unicortical long nail (ULN), with a longer nail than USN and three bridging unicortical screws; and 2) BLN. Specimens were axially loaded to 22.7 kg (50 lb), and internally rotated 90°/sec until failure. Results. For synthetic femora, a difference was detected between GSN and BLN in energy to failure (p = 0.04) and torque at failure (p = 0.02), but not between USN and other groups for energy to failure (vs GSN, p = 0.71; vs BLN, p = 0.19) and torque at failure (vs GSN, p = 0.55; vs BLN, p = 0.15). For cadaveric femora, ULN and BLN performed similarly because of the improvement provided by the bridging screws. Conclusions. Our study shows that bicortical angled screws in the DHS side plate are superior to no screws at all in this model and loading scenario, and suggests that adding unicortical screws to a gapped construct is probably beneficial


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1071 - 1078
1 Aug 2011
Keating JF Will EM

A total of 80 patients with an acute rupture of tendo Achillis were randomised to operative repair using an open technique (39 patients) or non-operative treatment in a cast (41 patients). Patients were followed up for one year. Outcome measures included clinical complications, range of movement of the ankle, the Short Musculoskeletal Function Assessment (SMFA), and muscle function dynamometry evaluating dorsiflexion and plantar flexion of the ankle. The primary outcome measure was muscle dynamometry. Re-rupture occurred in two of 37 patients (5%) in the operative group and four of 39 (10%) in the non-operative group, which was not statistically significant (p = 0.68). There was a slightly greater range of plantar flexion and dorsiflexion of the ankle in the operative group at three months which was not statistically significant, but at four and six months the range of dorsiflexion was better in the non-operative group, although this did not reach statistically significance either. After 12 weeks the peak torque difference of plantar flexion compared with the normal side was less in the operative than the non-operative group (47% vs 61%, respectively, p < 0.005). The difference declined to 26% and 30% at 26 weeks and 20% and 25% at 52 weeks, respectively. The difference in dorsiflexion peak torque from the normal side was less than 10% by 26 weeks in both groups, with no significant differences. The mean SMFA scores were significantly better in the operative group than the non-operative group at three months (15 vs 20, respectively, p < 0.03). No significant differences were observed after this, and at one year the scores were similar in both groups. We were unable to show a convincing functional benefit from surgery for patients with an acute rupture of the tendo Achillis compared with conservative treatment in plaster


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 458 - 462
1 Apr 2020
Limberg AK Tibbo ME Pagnano MW Perry KI Hanssen AD Abdel MP

Aims. Varus-valgus constrained (VVC) implants are often used during revision total knee arthroplasty (TKA) to gain coronal plane stability. However, the increased mechanical torque applied to the bone-cement interface theoretically increases the risk of aseptic loosening. We assessed mid-term survivorship, complications, and clinical outcomes of a fixed-bearing VVC device in revision TKAs. Methods. A total of 416 consecutive revision TKAs (398 patients) were performed at our institution using a single fixed-bearing VVC TKA from 2007 to 2015. Mean age was 64 years (33 to 88) with 50% male (199). Index revision TKA diagnoses were: instability (n = 122, 29%), aseptic loosening (n = 105, 25%), and prosthetic joint infection (PJI) (n = 97, 23%). All devices were cemented on the epiphyseal surfaces. Femoral stems were used in 97% (n = 402) of cases, tibial stems in 95% (n = 394) of cases; all were cemented. In total, 93% (n = 389) of cases required a stemmed femoral and tibial component. Femoral cones were used in 29%, and tibial cones in 40%. Survivorship was assessed via competing risk analysis; clinical outcomes were determined using Knee Society Scores (KSSs) and range of movement (ROM). Mean follow-up was four years (2 to 10). Results. The five-year cumulative incidence of subsequent revision for aseptic loosening and instability were 2% (95% confidence interval (CI) 0.2 to 3, number at risk = 154) and 4% (95% CI 2 to 6, number at risk = 153), respectively. The five-year cumulative incidence of any subsequent revision was 14% (95% CI 10 to 18, number at risk = 150). Reasons for subsequent revision included PJI (n = 23, of whom 12 had previous PJI), instability (n = 13), and aseptic loosening (n = 11). The use of this implant without stems was found to be a significant risk factor for subsequent revision (hazard ratio (HR) 7.58 (95% CI 3.98 to 16.03); p = 0.007). KSS improved from 46 preoperatively to 81 at latest follow-up (p < 0.001). ROM improved from 96° prerevision to 108° at latest follow-up (p = 0.016). Conclusion. The cumulative incidence of subsequent revision for aseptic loosening and instability was very low at five years with this fixed-bearing VVC implant in revision TKAs. Routine use of cemented and stemmed components with targeted use of metaphyseal cones likely contributed to this low rate of aseptic loosening. Cite this article: Bone Joint J 2020;102-B(4):458–462


Bone & Joint Research
Vol. 2, Issue 10 | Pages 214 - 219
1 Oct 2013
Chezar A Berkovitch Y Haddad M Keren Y Soudry M Rosenberg N

Objectives. The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. Methods. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Results. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. Conclusions. We found previously unrecognised variations of rotator cuff muscles’ isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214–19


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 353 - 357
1 Mar 2015
Maffulli N Oliva F Costa V Del Buono A

We hypothesised that a minimally invasive peroneus brevis tendon transfer would be effective for the management of a chronic rupture of the Achilles tendon. In 17 patients (three women, 14 men) who underwent minimally invasive transfer and tenodesis of the peroneus brevis to the calcaneum, at a mean follow-up of 4.6 years (2 to 7) the modified Achilles tendon total rupture score (ATRS) was recorded and the maximum circumference of the calf of the operated and contralateral limbs was measured. The strength of isometric plantar flexion of the gastrocsoleus complex and of eversion of the ankle were measured bilaterally. Functional outcomes were classified according to the four-point Boyden scale. . At the latest review, the mean maximum circumference of the calf of the operated limb was not significantly different from the pre-operative mean value, (41.4 cm, 32 to 50 vs 40.6 cm, 33 to 46; p = 0.45), and not significantly less than that of the contralateral limb (43.1 cm, 35 to 52; p = 0.16). The mean peak torque (244.6 N, 125 to 367) and the strength of eversion of the operated ankle (149.1 N, 65 to 240) were significantly lower (p < 0.01) than those of the contralateral limb (mean peak torque 289, 145 to 419; strength of eversion: 175.2, 71 to 280). The mean ATRS significantly improved from 58 pre-operatively (35 to 68) to 91 (75 to 97; 95% confidence interval 85.3 to 93.2) at the time of final review. Of 13 patients who practised sport at the time of injury, ten still undertook recreational activities. . This procedure may be safely performed, is minimally invasive, and allows most patients to return to pre-injury sport and daily activities. Cite this article: Bone Joint J 2015;97-B:353–7


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims

As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA).

Methods

Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 387 - 391
1 Apr 2002
Sandén B Olerud C Petrén-Mallmin M Larsson S

We investigated the effects of hydroxyapatite (HA) coating on the purchase of pedicle screws. A total of 23 consecutive patients undergoing lumbar fusion was randomly assigned to one of three treatment groups. The first received uncoated stainless-steel screws, the second screws which were partly coated with HA, and the third screws which were fully coated. The insertion torque was recorded. After 11 to 16 months, 21 screws had been extracted. The extraction torque was recorded. Radiographs were taken to assess fusion and to detect loosening of the screws. At removal, the extraction torques exceeded the upper limit of the torque wrench (600 Ncm) for many HA-coated screws. The calculated mean extraction torque was 29 ± 36 Ncm for the uncoated group, 447 ± 114 Ncm for the partly-coated group and 574 ± 52 Ncm for the fully-coated group. There were significant differences between all three groups (p < 0.001). There were more radiolucent zones surrounding the uncoated screws than the HA-coated screws (p < 0.001). HA coating of pedicle screws resulted in improved fixation with reduced risk of loosening of the screws


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 67 - 73
1 Mar 2024
Laboudie P Hallé A Anract P Hamadouche M

Aims

The aim of this retrospective study was to assess the incidence of early periprosthetic femoral fracture (PFF) associated with Charnley-Kerboull (CK) femoral components cemented according to the ‘French paradox’ principles through the Hueter anterior approach (HAA) in patients older than 70 years.

Methods

From a prospectively collected database, all short CK femoral components implanted consecutively from January 2018 to May 2022 through the HAA in patients older than 70 years were included. Exclusion criteria were age below 70 years, use of cementless femoral component, and approaches other than the HAA. A total of 416 short CK prostheses used by 25 surgeons with various levels of experience were included. All patients had a minimum of one-year follow-up, with a mean of 2.6 years (SD 1.1). The mean age was 77.4 years (70 to 95) and the mean BMI was 25.3 kg/m2 (18.4 to 43). Femoral anatomy was classified according to Dorr. The measured parameters included canal flare index, morphological cortical index, canal-calcar ratio, ilium-ischial ratio, and anterior superior iliac spine to greater trochanter (GT) distance.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 419 - 426
1 Sep 2016
Leichtle CI Lorenz A Rothstock S Happel J Walter F Shiozawa T Leichtle UG

Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each vertebra. Results. Mean failure load was significantly greater for fenestrated cemented screws (+622 N; p ⩽ 0.001) and solid cemented screws (+460 N; p ⩽ 0.001) than for uncemented screws. There was no significant difference between the solid and fenestrated cemented screws (p = 0.5). In the lower thoracic vertebrae, 1 mL cement was enough to significantly increase failure load, while 3 mL led to further significant improvement in the upper thoracic, lower thoracic and lumbar regions. Conclusion. Conventional, solid pedicle screws augmented with high-viscosity cement provided comparable screw stability in pull-out testing to that of sophisticated and more expensive fenestrated screws. In terms of cement volume, we recommend the use of at least 1 mL in the thoracic and 3 mL in the lumbar spine. Cite this article: C. I. Leichtle, A. Lorenz, S. Rothstock, J. Happel, F. Walter, T. Shiozawa, U. G. Leichtle. Pull-out strength of cemented solid versus fenestrated pedicle screws in osteoporotic vertebrae. Bone Joint Res 2016;5:419–426


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 938 - 945
1 Aug 2022
Park YH Kim W Choi JW Kim HJ

Aims

Although absorbable sutures for the repair of acute Achilles tendon rupture (ATR) have been attracting attention, the rationale for their use remains insufficient. This study prospectively compared the outcomes of absorbable and nonabsorbable sutures for the repair of acute ATR.

Methods

A total of 40 patients were randomly assigned to either braided absorbable polyglactin suture or braided nonabsorbable polyethylene terephthalate suture groups. ATR was then repaired using the Krackow suture method. At three and six months after surgery, the isokinetic muscle strength of ankle plantar flexion was measured using a computer-based Cybex dynamometer. At six and 12 months after surgery, patient-reported outcomes were measured using the Achilles tendon Total Rupture Score (ATRS), visual analogue scale for pain (VAS pain), and EuroQoL five-dimension health questionnaire (EQ-5D).


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 129 - 133
1 Jan 2015
Niedzielski KR Malecki K Flont P Fabis J

In 11 paediatric patients (seven girls and four boys, from 12 to 15 years old) with unilateral obligatory patellar dislocation and ligamentous laxity vastus medialis advancement, lateral release, partial patellar ligament transposition and Galeazzi semitendinosus tenodesis was undertaken to stabilise the patella. The diagnostic criterion for ligamentous laxity was based on the Beighton scale. Outcomes were evaluated radiologically and functionally by measurement of the range of knee movement and isokinetic testing. The evaluation also included the Lysholm knee scale. Follow-up studies took place at a mean of 8.1 years (5 to 15) post-operatively. Normal patellar tracking without any recurrence of dislocation was obtained in ten out of 11 patients. Pain related to vigorous activity was reported by nine patients. Compared with the opposite normal side, the isokinetic tests revealed a statistically significant decrease in the maximal torque values for the affected quadriceps muscle (p = 0.003 and p = 0.004), but no difference between the knee flexors (for angular velocities of 60°/s and 180°/s) (p = 0.858 and p = 0.79). The applied surgical technique generally prevents the recurrence of the disorder in children with habitual patellar dislocation and ligamentous laxity. Quadriceps muscle weakness can be expected to occur post-operatively,. Cite this article: Bone Joint J 2015;96-B:129–33


Bone & Joint 360
Vol. 13, Issue 1 | Pages 29 - 31
1 Feb 2024

The February 2024 Spine Roundup360 looks at: Surgeon assessment of bone – any good?; Robotics reduces radiation exposure in some spinal surgery; Interbody fusion cage versus anterior lumbar interbody fusion with posterior instrumentation; Is robotic-assisted pedicle screw placement an answer to the learning curve?; Acute non-traumatic spinal subarachnoid haematomas: a report of five cases and a systematic review of the literature; Is L4-L5 lateral interbody fusion safe and effective?


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 879 - 883
1 Sep 2024
Kayani B Staats K Haddad FS


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 902 - 906
1 Jul 2014
Chareancholvanich K Pornrattanamaneewong C

We have compared the time to recovery of isokinetic quadriceps strength after total knee replacement (TKR) using three different lengths of incision in the quadriceps. We prospectively randomised 60 patients into one of the three groups according to the length of incision in the quadriceps above the upper border of the patella (2 cm, 4 cm or 6 cm). The strength of the knees was measured pre-operatively and every month post-operatively until the peak quadriceps torque returned to its pre-operative level. There was no significant difference in the mean operating time, blood loss, hospital stay, alignment or pre-operative isokinetic quadriceps strength between the three groups. Using the Kaplan–Meier method, group A had a similar mean recovery time to group B (2.0 ± 0.2 vs 2.5 ± 0.2 months, p = 0.176). Group C required a significantly longer recovery time (3.4 ± 0.3 months) than the other groups (p < 0.03). However, there were no significant differences in the mean Oxford knee scores one year post-operatively between the groups. We conclude that an incision of up to 4 cm in the quadriceps does not delay the recovery of its isokinetic strength after TKR. Cite this article: Bone Joint J 2014;96-B:902–6


Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims

Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model.

Methods

We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims

A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes.

Methods

ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 5 | Pages 816 - 821
1 Sep 1990
Matsumoto H

The mechanism of the pivot shift was investigated by analysing movements under valgus torque in 29 fresh cadaveric knees. The movements were measured in three dimensions, using biplanar photography, when all the ligaments were intact, and then after the ligaments were sequentially divided. When only the anterior cruciate ligament was sectioned, the pivot shift occurred in seven out of 20 knees examined. In the other 13, though the pivot shift was not observed, an abnormal internal rotation occurred at between 10 degrees and 50 degrees of flexion. Division of the iliotibial tract in addition to division of the anterior cruciate ligament stopped the pivot shift, as the tibia remained internally rotated throughout the range of flexion. The axis of rotation of the pivot shift was located at the medial collateral ligament, which was kept tight by the applied valgus torque. The sudden movement in the pivot shift was caused by a complex interaction between the geometry of the knee and the valgus torque applied


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 220 - 223
1 Mar 2024
Kayani B Luo TD Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 11 - 15
1 Jan 2024
Jain S Lamb JN Pandit H

Polished taper-slip (PTS) cemented stems have an excellent clinical track record and are the most common stem type used in primary total hip arthroplasty (THA) in the UK. Due to low rates of aseptic loosening, they have largely replaced more traditional composite beam (CB) cemented stems. However, there is now emerging evidence from multiple joint registries that PTS stems are associated with higher rates of postoperative periprosthetic femoral fracture (PFF) compared to their CB stem counterparts. The risk of both intraoperative and postoperative PFF remains greater with uncemented stems compared to either of these cemented stem subtypes. PFF continues to be a devastating complication following primary THA and is associated with high complication and mortality rates. Recent efforts have focused on identifying implant-related risk factors for PFF in order to guide preventative strategies, and therefore the purpose of this article is to present the current evidence on the effect of cemented femoral stem design on the risk of PFF.

Cite this article: Bone Joint J 2024;106-B(1):11–15.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1104 - 1109
1 Oct 2022
Hansjee S Giebaly DE Shaarani SR Haddad FS

We aim to explore the potential technologies for monitoring and assessment of patients undergoing arthroplasty by examining selected literature focusing on the technology currently available and reflecting on possible future development and application. The reviewed literature indicates a large variety of different hardware and software, widely available and used in a limited manner, to assess patients’ performance. There are extensive opportunities to enhance and integrate the systems which are already in existence to develop patient-specific pathways for rehabilitation.

Cite this article: Bone Joint J 2022;104-B(10):1104–1109.


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 723 - 728
1 Jul 2023
Raj RD Fontalis A Grandhi TSP Kim WJ Gabr A Haddad FS

There is a disparity in sport-related injuries between sexes, with females sustaining non-contact musculoskeletal injuries at a higher rate. Anterior cruciate ligament ruptures are between two and eight times more common than in males, and females also have a higher incidence of ankle sprains, patellofemoral pain, and bone stress injuries. The sequelae of such injuries can be devastating to an athlete, resulting in time out of sport, surgery, and the early onset of osteoarthritis. It is important to identify the causes of this disparity and introduce prevention programmes to reduce the incidence of these injuries. A natural difference reflects the effect of reproductive hormones in females, which have receptors in certain musculoskeletal tissues. Relaxin increases ligamentous laxity. Oestrogen decreases the synthesis of collagen and progesterone does the opposite. Insufficient diet and intensive training can lead to menstrual irregularities, which are common in female athletes and result in injury, whereas oral contraception may have a protective effect against certain injuries. It is important for coaches, physiotherapists, nutritionists, doctors, and athletes to be aware of these issues and to implement preventive measures. This annotation explores the relationship between the menstrual cycle and orthopaedic sports injuries in pre-menopausal females, and proposes recommendations to mitigate the risk of sustaining these injuries.

Cite this article: Bone Joint J 2023;105-B(7):723–728.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 3 | Pages 377 - 379
1 May 1992
Murray D

Long posterior wall (LPW) Charnley acetabular implants are widely used as it is believed that the LPW helps to prevent dislocation. This has, however, not been proven statistically. In a preliminary study of these implants removed at revision marked erosion of the LPW was frequently seen, indicating that repetitive impingement may occur. The influence of the long posterior wall was therefore investigated mathematically. LPW and standard sockets were found to be equally likely to dislocate provided that the standard socket was anteverted 5 degrees more than the LPW socket. With simulated external rotation, LPW sockets impinge 30% earlier than standard sockets. When impingement occurs a torque is applied to the components, which increases the shear stresses at the cement-bone interface. The torques, although not large enough to dislodge the socket immediately, are repetitive and so may contribute to loosening. The LPW socket can generate twice as much torque as the standard socket and therefore is more likely to loosen


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 121 - 129
1 Mar 2024
Orce Rodríguez A Smith PN Johnson P O'Sullivan M Holder C Shimmin A

Aims

In recent years, the use of a collared cementless femoral prosthesis has risen in popularity. The design intention of collared components is to transfer some load to the resected femoral calcar and prevent implant subsidence within the cancellous bone of the metaphysis. Conversely, the load transfer for a cemented femoral prosthesis depends on the cement-component and cement-bone interface interaction. The aim of our study was to compare the three most commonly used collared cementless components and the three most commonly used tapered polished cemented components in patients aged ≥ 75 years who have undergone a primary total hip arthroplasty (THA) for osteoarthritis (OA).

Methods

Data from the Australian Orthopaedic Association National Joint Replacement Registry from 1 September 1999 to 31 December 2022 were analyzed. Collared cementless femoral components and cemented components were identified, and the three most commonly used components in each group were analyzed. We identified a total of 11,278 collared cementless components and 47,835 cemented components. Hazard ratios (HRs) from Cox proportional hazards models, adjusting for age and sex, were obtained to compare the revision rates between the groups.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 28 - 36
18 Jan 2024
Selmene MA Moreau PE Zaraa M Upex P Jouffroy P Riouallon G

Aims

Post-traumatic periprosthetic acetabular fractures are rare but serious. Few studies carried out on small cohorts have reported them in the literature. The aim of this work is to describe the specific characteristics of post-traumatic periprosthetic acetabular fractures, and the outcome of their surgical treatment in terms of function and complications.

Methods

Patients with this type of fracture were identified retrospectively over a period of six years (January 2016 to December 2021). The following data were collected: demographic characteristics, date of insertion of the prosthesis, details of the intervention, date of the trauma, characteristics of the fracture, and type of treatment. Functional results were assessed with the Harris Hip Score (HHS). Data concerning complications of treatment were collected.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims

This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis.

Methods

A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1587 - 1593
1 Dec 2009
Oh JH Kim SH Kim JH Shin YH Yoon JP Oh CH

This study examined the role of vitamin D as a factor accounting for fatty degeneration and muscle function in the rotator cuff. There were 366 patients with disorders of the shoulder. A total of 228 patients had a full-thickness tear (group 1) and 138 patients had no tear (group 2). All underwent magnetic resonance arthrography and an isokinetic muscle performance test. The serum concentrations of vitamin D (25(OH)D. 3. ) were measured. In general, a lower serum level of vitamin D was related to higher fatty degeneration in the muscles of the cuff. Spearman’s correlation coefficients were 0.173 (p = 0.001), −0.181 (p = 0.001), and −0.117 (p = 0.026) for supraspinatus, infraspinatus and subscapularis, respectively. In group 1, multivariate linear regression analysis revealed that the serum level of vitamin D was an independent variable for fatty degeneration of the supraspinatus and infraspinatus. The serum vitamin D level has a significant negative correlation with the fatty degeneration of the cuff muscle and a positive correlation with isokinetic muscle torque


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 457 - 461
1 Apr 2004
Sandén B Olerud C Petrén-Mallmin M Johansson C Larsson S

We examined the radiographs from a prospective clinical study of fixation by pedicle screws and those from an experimental study in a sheep model. In the clinical study, instruments were removed from 21 patients after implantation for 11 to 16 months and the extraction torques of the screws were recorded. A structured protocol was used for the radiological examinations. In the experimental study, loaded pedicle screw instrumentations were implanted in the sheep for six or 12 weeks. After radiological examination the pull-out resistance and the histological characteristics were studied. In the clinical study, all screws with radiolucent zones had a significantly reduced mean extraction torque compared with screws without radiolucent zones (16 ± 10 Ncm v 403 ± 220 Ncm; p < 0.0001). In the experimental study the mean maximum pull-out resistance for the screws with radiolucent zones was significantly lower than for those with no radiolucency (243 ± 156 N v 2214 ± 578 N; p = 0.0006) and the mean bone-to-screw contact was reduced for screws with zones compared with those without zones (8 ± 9% v 55 ± 29%; p = 0.0002). Our findings showed that all screws with radiolucent zones had low extraction torques or low pull-out resistance. A radiolucent zone is a good indicator of loosening of a pedicle screw