Advertisement for orthosearch.org.uk
Results 1 - 50 of 261
Results per page:
Bone & Joint Research
Vol. 6, Issue 2 | Pages 108 - 112
1 Feb 2017
Itabashi T Narita K Ono A Wada K Tanaka T Kumagai G Yamauchi R Nakane A Ishibashi Y

Objectives. The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods. Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm. 2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results. No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion. Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar antimicrobial properties. Cite this article: T. Itabashi, K. Narita, A. Ono, K. Wada, T. Tanaka, G. Kumagai, R. Yamauchi, A. Nakane, Y. Ishibashi. Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 2017;6:108–112. DOI: 10.1302/2046-3758.62.2000619


Bone & Joint Research
Vol. 7, Issue 5 | Pages 357 - 361
1 May 2018
Shin T Lim D Kim YS Kim SC Jo WL Lim YW

Objectives. Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods. The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results. Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions. The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1


Aims. The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) may improve quality of life for amputees by avoiding soft-tissue complications associated with socket prostheses and by improving sensory feedback and function. It relies on the formation of a seal between the soft tissues and the implant and currently has a flange with drilled holes to promote dermal attachment. Despite this, infection remains a significant risk. This study explored alternative strategies to enhance soft-tissue integration. Materials and Methods. The effect of ITAP pins with a fully porous titanium alloy flange with interconnected pores on soft-tissue integration was investigated. The flanges were coated with fibronectin-functionalised hydroxyapatite and silver coatings, which have been shown to have an antibacterial effect, while also promoting viable fibroblast growth in vitro. The ITAP pins were implanted along the length of ovine tibias, and histological assessment was undertaken four weeks post-operatively. Results. The porous titanium alloy flange reduced epithelial downgrowth and increased soft-tissue integration compared with the current drilled flange. The addition of coatings did not enhance these effects. Conclusion. These results indicate that a fully porous titanium alloy flange has the potential to increase the soft-tissue seal around ITAP and reduce susceptibility to infection compared with the current design. Cite this article: Bone Joint J 2017;99-B:393–400


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 3 | Pages 427 - 484
1 Aug 1981
Uhthoff H Bardos D Liskova-Kiar M

An experimental study is reported of fracture healing in the femora of 36 Beagle dogs, comparing the results of using stainless steel plates with those of using less rigid titanium alloy plates. The alloy plates led to the appearance of a small amount of periosteal callus without any histological evidence of fracture instability, thus allowing the radiological assessment of fracture union. This also produced less bone loss during the remodelling phase. Radiological measurements 24 weeks after osteotomy showed cortical thickness to be reduced by six per cent under titanium alloy and by 19 per cent under stainless steel, while histological measurements showed a total bone loss of 3.7 per cent under titanium alloy and of 11 per cent under stainless steel plates. Removal of the titanium alloy plates after eight weeks followed by a recovery period of 16 weeks produced an increase of cortical thickness of 69 per cent and a gain in total bone mass of 30 per cent. Titanium alloy plates also produced less soft-tissue reaction than stainless steel plates. It is concluded that this alloy is a promising material for internal fixation devices


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 564 - 569
1 Apr 2012
Pendegrass CJ El-Husseiny M Blunn GW

The success of long-term transcutaneous implants depends on dermal attachment to prevent downgrowth of the epithelium and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn) have independently been shown to regulate fibroblast activity and improve attachment. In an attempt to enhance this phenomenon we adsorbed Fn onto HA-coated substrates. Our study was designed to test the hypothesis that adsorption of Fn onto HA produces a surface that will increase the attachment of dermal fibroblasts better than HA alone or titanium alloy controls. . Iodinated Fn was used to investigate the durability of the protein coating and a bioassay using human dermal fibroblasts was performed to assess the effects of the coating on cell attachment. Cell attachment data were compared with those for HA alone and titanium alloy controls at one, four and 24 hours. Protein attachment peaked within one hour of incubation and the maximum binding efficiency was achieved with an initial droplet of 1000 ng. We showed that after 24 hours one-fifth of the initial Fn coating remained on the substrates, and this resulted in a significant, three-, four-, and sevenfold increase in dermal fibroblast attachment strength compared to uncoated controls at one, four and 24 hours, respectively


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 311 - 315
1 Mar 1997
Rogers SD Howie DW Graves SE Pearcy MJ Haynes DR

Our aim was to determine whether in vitro studies would detect differences in the cellular response to wear particles of two titanium alloys commonly used in the manufacture of joint replacement prostheses. Particles were of the order of 1 μm in diameter representative of those found adjacent to failed prostheses. Exposure of human monocytes to titanium 6-aluminium 4- vanadium (TiAlV) at concentrations of 4 x 10. 7. particles/ml produced a mean prostaglandin E. 2. release of 2627.6 pM; this was significantly higher than the 317.4 pM induced by titanium 6-aluminium 7-niobium alloy (TiAlNb) particles (p = 0.006). Commercially-pure titanium particles induced a release of 347.8 pM. In addition, TiAlV stimulated significantly more release of the other cell mediators, interleukin-1, tumour necrosis factor and interleukin-6. At lower concentrations of particles there was less mediator release and less obvious differences between materials. None of the materials caused significant toxicity. The levels of inflammatory mediators released by phagocytic cells in response to wear particles may influence the amount of periprosthetic bone loss. Our findings have shown that in vitro studies can detect differences in cellular response induced by particles of similar titanium alloys in common clinical use, although in vivo studies have shown little difference. While in vitro studies should not be used as the only form of assessment, they must be considered when assessing the relative biocompatibility of different implant materials


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 4 | Pages 559 - 563
1 Jul 1991
Witt J Swann M

Thirteen total hip replacements with titanium alloy femoral components required revision for loosening at an average of two years after implantation. At revision the soft tissues around the implant were darkly stained and a proliferative membrane had invaded the cement-bone interface. The femoral components showed polishing of parts of their shot-blasted surfaces. Histology showed a fibroblastic reaction with abundant titanium lying free and within histiocytes, and a scanty foreign-body giant-cell reaction. Surface analysis of the removed femoral components and chemical analysis of the excised tissues is described. Tissue reaction in response to the metal-wear debris may have contributed to the early failure of these implants


Bone & Joint Research
Vol. 6, Issue 5 | Pages 331 - 336
1 May 2017
Yamauchi R Itabashi T Wada K Tanaka T Kumagai G Ishibashi Y

Objectives. Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Methods. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data. Results. The amount of carbon and the contact angle on both implants were significantly reduced after UV irradiation. The BIC ratios for both UV light-treated implants significantly increased at two weeks, but there was no significant difference at four weeks. There was no significant difference in the BV ratios between the UV light-treated and control implants at two or four weeks. Conclusions. This study suggests that photofunctionalisation of Ti6Al4V implants, similar to that of Ti implants, may promotes osseointegration in early but not in the late phase of osseointegration. Cite this article: R. Yamauchi, T. Itabashi, K. Wada, T. Tanaka, G. Kumagai, Y. Ishibashi. Photofunctionalised Ti6Al4V implants enhance early phase osseointegration. Bone Joint Res 2017;6:331–336. DOI: 10.1302/2046-3758.65.BJR-2016-0221.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 155 - 162
1 Jan 1999
Nakashima Y Sun D Trindade MCD Chun LE Song Y Goodman SB Schurman DJ Maloney WJ Smith RL

Particulate wear debris is associated with periprosthetic inflammation and loosening in total joint arthroplasty. We tested the effects of titanium alloy (Ti-alloy) and PMMA particles on monocyte/macrophage expression of the C-C chemokines, monocyte chemoattractant protein-1 (MCP-1), monocyte inflammatory protein-1 alpha (MIP-1α), and regulated upon activation normal T expressed and secreted protein (RANTES). Periprosthetic granulomatous tissue was analysed for expression of macrophage chemokines by immunohistochemistry. Chemokine expression in human monocytes/macrophages exposed to Ti-alloy and PMMA particles in vitro was determined by RT-PCR, ELISA and monocyte migration. We observed MCP-1 and MIP-1α expression in all tissue samples from failed arthroplasties. Ti-alloy and PMMA particles increased expression of MCP-1 and MIP-1α in macrophages in vitro in a dose- and time-dependent manner whereas RANTES was not detected. mRNA signal levels for MCP-1 and MIP-1α were also observed in cells after exposure to particles. Monocyte migration was stimulated by culture medium collected from macrophages exposed to Ti-alloy and PMMA particles. Antibodies to MCP-1 and MIP-1α inhibited chemotactic activity of the culture medium samples. Release of C-C chemokines by macrophages in response to wear particles may contribute to chronic inflammation at the bone-implant interface in total joint arthroplasty


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 467 - 471
1 Apr 2013
Sandiford N Doctor C Rajaratnam SS Ahmed S East DJ Miles K Butler-Manuel A Shepperd JAN

We present the extended follow-up (≥ 20 years) of a series of fully hydroxyapatite-coated femoral components used in 72 primary total hip replacements (THRs). Earlier results of this cohort have been previously published. All procedures were performed between 1986 and 1991. The series involved 45 women and 15 men with 12 bilateral procedures. Their mean age at the time of surgery was 60 years (46 to 80) and the mean duration of follow-up was 22.5 years (20 to 25). At final follow-up, the mean Merle d’Aubigné and Postel hip scores were 5.5 (4.5 to 6), 3.8 (3.5 to 5) and 3.3 (3.0 to 5.0) for pain, mobility and function, respectively. Of the patients 92% were very satisfied at the time of final follow-up.

There were seven revisions: six of the acetabular component for aseptic loosening and one of both the stem and the acetabular component for loosening due to deep infection. The survival of this prosthesis at 22.5 years with revision for any reason as the endpoint was 91.7% (95% confidence interval (CI) 84 to 99). Survival with aseptic loosening of the stem as the endpoint was 100% (95% CI 90 to 100).

This prosthesis provides pain relief in the long term. Survival of this component is comparable to the best results for primary THR with any means of fixation.

Cite this article: Bone Joint J 2013;95-B:467–71.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1195 - 1201
1 Nov 2001
McGrath LR Shardlow DL Ingham E Andrews M Ivory J Stone MH Fisher J

We have examined 26 retrieved, failed titanium-alloy femoral stems. The clinical details, radiological appearances and the histology of the surrounding soft tissues in each patient were also investigated.

The stems were predominantly of the flanged design and had a characteristic pattern of wear. A review of the radiographs showed a series of changes, progressive with time. The first was lateral debonding with subsidence of the stem. This was followed by calcar resorption and fragmentation or fracture of the cement. Finally, osteolysis was seen, starting with a radiolucency at the cement-bone interface and progressing to endosteal cavitation.

Three histological appearances were noted: granulomatous, necrobiotic and necrotic. We suggest that an unknown factor, possibly related to the design of the stem, caused it to move early. After this, micromovement at the cement-stem interface led to the generation of particulate debris and fracture of the cement. A soft-tissue reaction to the debris resulted in osteolysis and failure of fixation of the prostheses.


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 4 | Pages 534 - 536
1 Jul 1991
Scales J


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 2 | Pages 213 - 216
1 Mar 1989
Oonishi H Yamamoto M Ishimaru H Tsuji E Kushitani S Aono M Ukon Y

In rabbits and goats, test implants with a porous surface of two layers of Tl-6A;-4V beads were examined at intervals for bond strength with bone. Half of the implants were coated with hydroxyapatite by plasma spray. The bonding strength with bone in the coated specimens was about four times greater than that of the uncoated specimens at two weeks, and twice as strong at six weeks. Twelve weeks after implantation, the strengths were similar. The hydroxyapatite coating of the beads provided earlier and stronger fixation.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 116 - 121
1 Jul 2020
Heise G Black CM Smith R Morrow BR Mihalko WM

Aims. This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys. Methods. Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment. Results. On stainless steel, both nonactivated and activated cell groups were shown to have a significant increase in metal ion release for Cr, Fe, and Ni (p < 0.001, p = 0.002, and p = 0.020 respectively) compared with medium only and showed macrophage-sized corrosive pits on the stainless steel surface. On titanium alloy discs there was a significant increase in aluminum (p < 0.001) among all groups compared with medium only. Conclusion. These results indicated that macrophages were able to attach to and affect the oxide surface of stainless steel and titanium alloy discs. Cite this article: Bone Joint J 2020;102-B(7 Supple B):116–121


Bone & Joint Research
Vol. 11, Issue 9 | Pages 629 - 638
1 Sep 2022
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Aims. Here we used a mature seven-day biofilm model of Staphylococcus aureus, exposed to antibiotics up to an additional seven days, to establish the effectiveness of either mechanical cleaning or antibiotics or non-contact induction heating, and which combinations could eradicate S. aureus in mature biofilms. Methods. Mature biofilms of S. aureus (ATCC 29213) were grown on titanium alloy (Ti6Al4V) coupons for seven days and were subjected to the following treatments or their combinations: antibiotics, mechanical cleaning, or heat shock by induction heating of 60°C for one minute. Experiments were repeated at least five times. Results. In the untreated biofilm, growth up to 1.8×10. 11. colony-forming units (CFU)/cm. 2. was observed. Treatment with ciprofloxacin, flucloxacillin, vancomycin, cefuroxime, and amoxicillin all with rifampicin gave 6.0 log, 6.1 log, 1.4 log, 4.8 log, and 3.6 log reduction in CFU/cm. 2. , respectively. Mechanical cleaning alone resulted in 4.9 log reduction and induction heating in 7.3 log reduction. There was an additional effect of ciprofloxacin, flucloxacillin, and induction heating when used in combinations. There was no additional effect for mechanical cleaning. No bacterial growth could be detected after induction heating followed by seven days of ciprofloxacin with rifampicin. Conclusion. Mechanical cleaning, antibiotics, and non-contact induction heating reduced the bacterial load of mature S. aureus biofilms with approximately 5 log or more as a single treatment. The effect of mechanical cleaning on mature S. aureus biofilms was limited when used in combination with antibiotics and/or induction heating. Cite this article: Bone Joint Res 2022;11(9):629–638


Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims. Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone. Methods. S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs). Results. Halicin continued to exert significantly (p < 0.01) more antibacterial activity against biofilms grown on all tested orthopaedically relevant substrates than vancomycin, an antibiotic known to be affected by biofilm maturity. For example, halicin MBECs against both less mature and more mature biofilms were ten-fold to 40-fold higher than its MIC. In contrast, vancomycin MBECs against the less mature biofilms were 50-fold to 200-fold higher than its MIC, and 100-fold to 400-fold higher against the more mature biofilms. Conclusion. Halicin is a promising antibiotic that should be tested in animal models of orthopaedic infection. Cite this article: Bone Joint Res 2024;13(3):101–109


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 158 - 162
1 Jun 2020
Griseti Q Jacquet C Sautet P Abdel MP Parratte S Ollivier M Argenson J

Aims. The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant Staphylococcus aureus (MSSA/MRSA) between the two groups. Methods. A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm. 3. cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate. Results. For MSSA and MRSA, no inhibitory effect was found in the control group, and antibiotic-loaded smooth titanium alloy beads showed a short inhibitory effect until day 2. For MSSA, both tantalum and 3D porous titanium beads showed significantly larger mean ZOIs than cement beads (all p < 0.01) each day until day 7 for tantalum and until day 3 for 3D porous titanium. After six days, antibiotic-loaded cement had significantly larger mean ZOIs than the 3D porous titanium (p = 0.027), but no significant difference was found with tantalum (p = 0.082). For MRSA, both tantalum and 3D porous titanium beads had significantly larger mean ZOIs than antibiotic-loaded cement each day until day 6 for tantalum (all p < 0.01) and until day 3 for 3D porous titanium (all p < 0.04). Antibiotic-loaded cement had significantly larger mean ZOIs than tantalum and 3D porous titanium from day 7 to 9 (all p < 0.042). Conclusion. These results show that porous metal implants can deliver local antibiotics over slightly varying time frames based on in vitro analysis. Cite this article: Bone Joint J 2020;102-B(6 Supple A):158–162


Bone & Joint Research
Vol. 9, Issue 4 | Pages 192 - 199
1 Apr 2020
Pijls BG Sanders IMJG Kujiper EJ Nelissen RGHH

Aims. Induction heating is a noninvasive, nonantibiotic treatment modality that can potentially be used to cause thermal damage to the bacterial biofilm on the metal implant surface. The purpose of this study was to determine the effectiveness of induction heating on killing Staphylococcus epidermidis from biofilm and to determine the possible synergistic effect of induction heating and antibiotics. Methods. S. epidermidis biofilms were grown on titanium alloy (Ti6Al4V) coupons for 24 hours (young biofilm) and seven days (mature biofilm). These coupons with biofilm were heated to temperatures of 50°C, 55°C, 60°C, 65°C, 70°C, 80°C, and 90°C for 3.5 minutes and subsequently exposed to vancomycin and rifampicin at clinically relevant concentrations. Results. For the young biofilm, total eradication was observed at 65°C or higher for 3.5 minutes followed by 24 hours of vancomycin 10 mg/l and rifampicin 1 mg/l. For the mature biofilm, total eradication was observed at 60°C for 3.5 minutes followed by 24 hours of vancomycin 10 mg/l and rifampicin 1 mg/l. Total eradication was also observed at 60°C for 3.5 minutes followed by 24 hours of vancomycin 1 mg/l and rifampicin 1 mg/l followed by another thermal shock of 60°C for 3.5 minutes (two thermal shocks). Conclusion. Induction heating of Ti6Al4V coupons is effective in reducing bacterial load in vitro for S. epidermidis biofilms. Induction heating and antibiotics have a synergistic effect resulting in total eradication of the biofilm at 60°C or higher for clinically relevant concentrations of vancomycin and rifampicin. Cite this article:Bone Joint Res. 2020;9(4):192–199


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1604 - 1610
1 Oct 2021
Takaoka Y Goto K Tamura J Okuzu Y Kawai T Kuroda Y Orita K Matsuda S

Aims. We aimed to evaluate the long-term outcome of highly cross-linked polyethylene (HXLPE) cemented acetabular components and assess whether any radiolucent lines (RLLs) which arose were progressive. Methods. We retrospectively reviewed 170 patients who underwent 187 total hip arthroplasties at two hospitals with a minimum follow-up of ten years. All interventions were performed using the same combination of HXLPE cemented acetabular components with femoral stems made of titanium alloy. Kaplan-Meier survival analysis was performed for the primary endpoint of acetabular component revision surgery for any reason and secondary endpoint of the appearance of RLLs. RLLs that had appeared once were observed over time. We statistically assessed potential relationships between RLLs and a number of factors, including the technique of femoral head autografting and the Japanese Orthopaedic Association score. Results. The mean follow-up period was 13.0 years (10.0 to 16.3). Femoral head autografting was performed on 135 hips (72.2%). One acetabular component was retrieved because of deep infection. No revision was performed for the aseptic acetabular loosening. The Kaplan-Meier survival curve for the primary and secondary endpoints were 98.2% (95% confidence interval (CI) 88.6% to 99.8%) and 79.3% (95% CI 72.8% to 84.6%), respectively. RLLs were detected in 38 hips (21.2%), at a mean of 1.7 years (1 month to 6 years) postoperatively. None of the RLLs were progressive, and the presence of RLLs did not show a significant association with the survival and clinical score. RLLs were more frequently observed in hips without femoral head autografts than in those with autografts. Conclusion. The use of HXLPE cemented acetabular components in total hip arthroplasty demonstrated excellent clinical outcomes after ten years, and no RLLs were progressive, and their presence did not affect the outcome. Femoral head autografting did not negatively impact the acetabular component survival or the appearance of RLLs. Cite this article: Bone Joint J 2021;103-B(10):1604–1610


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1304 - 1312
1 Oct 2017
Langton DJ Sidaginamale RP Joyce TJ Meek RD Bowsher JG Deehan D Nargol AVF Holland JP

Aims. We sought to determine whether cobalt-chromium alloy (CoCr) femoral stem tapers (trunnions) wear more than titanium (Ti) alloy stem tapers (trunnions) when used in a large diameter (LD) metal-on-metal (MoM) hip arthroplasty system. Patients and Methods. We performed explant analysis using validated methodology to determine the volumetric material loss at the taper surfaces of explanted LD CoCr MoM hip arthroplasties used with either a Ti alloy (n = 28) or CoCr femoral stem (n = 21). Only 12/14 taper constructs with a rough male taper surface and a nominal included angle close to 5.666° were included. Multiple regression modelling was undertaken using taper angle, taper roughness, bearing diameter (horizontal lever arm) as independent variables. Material loss was mapped using a coordinate measuring machine, profilometry and scanning electron microscopy. Results. After adjustment for other factors, CoCr stem tapers were found to have significantly greater volumetric material loss than the equivalent Ti stem tapers. Conclusion. When taper junction damage is identified during revision of a LD MoM hip, it should be suspected that a male taper composed of a standard CoCr alloy has sustained significant changes to the taper cone geometry which are likely to be more extensive than those affecting a Ti alloy stem. Cite this article: Bone Joint J 2017;99-B:1304–12


Bone & Joint Research
Vol. 7, Issue 12 | Pages 629 - 635
1 Dec 2018
Hung L Chao C Huang J Lin J

Objectives. Screw plugs have been reported to increase the fatigue strength of stainless steel locking plates. The objective of this study was to examine and compare this effect between stainless steel and titanium locking plates. Methods. Custom-designed locking plates with identical structures were fabricated from stainless steel and a titanium alloy. Three types of plates were compared: type I unplugged plates; type II plugged plates with a 4 Nm torque; and type III plugged plates with a 12 Nm torque. The stiffness, yield strength, and fatigue strength of the plates were investigated through a four-point bending test. Failure analyses were performed subsequently. Results. For stainless steel, type II and type III plates had significantly higher fatigue strength than type I plates. For titanium, there were no significant differences between the fatigue strengths of the three types of plates. Failure analyses showed local plastic deformations at the threads of screw plugs in type II and type III stainless steel plates but not in titanium plates. Conclusion. The screw plugs could increase the fatigue strength of stainless steel plates but not of titanium plates. Therefore, leaving screw holes open around fracture sites is recommended in titanium plates. Cite this article: L-W. Hung, C-K. Chao, J-R. Huang, J. Lin. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates. Bone Joint Res 2018;7:629–635. DOI: 10.1302/2046-3758.712.BJR-2018-0083.R1


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure. Materials and Methods. A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix). Results. For both plate types, long spans increased IFM but did not substantially alter peak plate stress. The custom plate increased axial and shear IFM values by up to 24% and 47%, respectively, compared with the TomoFix. In all cases, a callus stiffness of 528 MPa was required to reduce plate stress below the fatigue strength of titanium alloy. Conclusion. We demonstrate that larger bridging spans in opening wedge HTO increase IFM without substantially increasing plate stress. The results indicate, however, that callus healing is required to prevent fatigue failure. Cite this article: A. R. MacLeod, G. Serrancoli, B. J. Fregly, A. D. Toms, H. S. Gill. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res 2018;7:639–649. DOI: 10.1302/2046-3758.712.BJR-2018-0035.R1


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims

To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections.

Methods

EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 306 - 314
3 May 2023
Rilby K Mohaddes M Kärrholm J

Aims

Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems.

Methods

In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis, dual-energy X-ray absorptiometry, and conventional radiography. A total of 39 patients attended the follow-up visit at two years (primary outcome) and 35 patients at five years. The primary outcome was which hip the patient considered to have the best function at two years.


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives. Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. . Results. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm. 3. /Mc, 4.1Â mm. 3. /Mc and 6.4 mm. 3. /Mc, respectively. . Conclusions. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29–37


Bone & Joint Open
Vol. 4, Issue 2 | Pages 79 - 86
10 Feb 2023
McLaughlin JR Johnson MA Lee KR

Aims

The purpose of this study is to report our updated results at a minimum follow-up of 30 years using a first generation uncemented tapered femoral component in primary total hip arthroplasty (THA).

Methods

The original cohort consisted of 145 consecutive THAs performed by a single surgeon in 138 patients. A total of 37 patients (40 hips) survived a minimum of 30 years, and are the focus of this review. The femoral component used in all cases was a first-generation Taperloc with a non-modular 28 mm femoral head. Clinical follow-up at a minimum of 30 years was obtained on every living patient. Radiological follow-up at 30 years was obtained on all but four.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 172 - 179
1 Feb 2023
Shimizu T Kato S Demura S Shinmura K Yokogawa N Kurokawa Y Yoshioka K Murakami H Kawahara N Tsuchiya H

Aims

The aim of this study was to investigate the incidence and characteristics of instrumentation failure (IF) after total en bloc spondylectomy (TES), and to analyze risk factors for IF.

Methods

The medical records from 136 patients (65 male, 71 female) with a mean age of 52.7 years (14 to 80) who underwent TES were retrospectively reviewed. The mean follow-up period was 101 months (36 to 232). Analyzed factors included incidence of IF, age, sex, BMI, history of chemotherapy or radiotherapy, tumour histology (primary or metastasis; benign or malignant), surgical approach (posterior or combined), tumour location (thoracic or lumbar; junctional or non-junctional), number of resected vertebrae (single or multilevel), anterior resection line (disc-to-disc or intravertebra), type of bone graft (autograft or frozen autograft), cage subsidence (CS), and local alignment (LA). A survival analysis of the instrumentation was performed, and relationships between IF and other factors were investigated using the Cox regression model.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 323 - 330
1 May 2017
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives. Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro?. Methods. Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa; spore-forming Bacillus cereus; and yeast Candida albicans. The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. Results. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Conclusion. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro. These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article: B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323–330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1567 - 1573
1 Dec 2006
Kovac S Trebse R Milosev I Pavlovcic V Pisot V

We present a retrospective series of 170 cemented titanium straight-stem femoral components combined with two types of femoral head: cobalt-chromium (CoCr) alloy (114 heads) and alumina ceramic (50 heads). Of the study group, 55 patients (55 stems) had died and six (six stems) were lost to follow-up. At a mean of 13.1 years (3 to 15.3) 26 stems had been revised for aseptic loosening. The mean follow-up time for stable stems was 15.1 years (12.1 to 16.6). Survival of the stem at 15 years was 75.4% (95% confidence interval (CI) 67.3 to 83.5) with aseptic failure (including radiological failure) as the end-point, irrespective of the nature of the head and the quality of the cement mantle. Survival of the stem at 15 years was 79.1% (95% CI 69.8 to 88.4) and 67.1% (95% CI 51.3 to 82.9) with the CoCr alloy and ceramic heads, respectively. The quality of the cement mantle was graded as a function of stem coverage: stems with complete tip coverage (type 1) had an 84.9% (95% CI 77.6 to 92.2) survival at 15 years, compared with those with a poor tip coverage (type 2) which had a survival of only 22.4% (95% CI 2.4 to 42.4). The poor quality of the cement mantle and the implantation of an alumina head substantially lowered the survival of the stem. In our opinion, further use of the cemented titanium alloy straight-stem femoral components used in our series is undesirable


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1032 - 1038
1 Sep 2022
García-Rey E Cruz-Pardos A Saldaña L

Aims

A significant reduction in wear at five and ten years was previously reported when comparing Durasul highly cross-linked polyethylene with nitrogen-sterilized Sulene polyethylene in total hip arthroplasty (THA). We investigated whether the improvement observed at the earlier follow-up continued, resulting in decreased osteolysis and revision surgery rates over the second decade.

Methods

Between January 1999 and December 2001, 90 patients underwent surgery using the same acetabular and femoral components with a 28 mm metallic femoral head and either a Durasul or Sulene liner. A total of 66 hips of this prospective randomized study were available for a minimum follow-up of 20 years. The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Dorr method on digitized radiographs with a software package.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 110 - 114
1 Mar 2024
Yee AHF Chan VWK Fu H Chan P Chiu KY

Aims

The aim of this study was to evaluate the survival of a collarless, straight, hydroxyapatite-coated femoral stem in total hip arthroplasty (THA) at a minimum follow-up of 20 years.

Methods

We reviewed the results of 165 THAs using the Omnifit HA system in 138 patients, performed between August 1993 and December 1999. The mean age of the patients at the time of surgery was 46 years (20 to 77). Avascular necrosis was the most common indication for THA, followed by ankylosing spondylitis and primary osteoarthritis. The mean follow-up was 22 years (20 to 31). At 20 and 25 years, 113 THAs in 91 patients and 63 THAs in 55 patients were available for review, respectively, while others died or were lost to follow-up. Kaplan-Meier analysis was performed to evaluate the survival of the stem. Radiographs were reviewed regularly, and the stability of the stem was evaluated using the Engh classification.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 776 - 781
16 Oct 2023
Matar HE Bloch BV James PJ

Aims

The aim of this study was to evaluate medium- to long-term outcomes and complications of the Stanmore Modular Individualised Lower Extremity System (SMILES) rotating hinge implant in revision total knee arthroplasty (rTKA) at a tertiary unit. It is hypothesized that this fully cemented construct leads to satisfactory clinical outcomes.

Methods

A retrospective consecutive study of all patients who underwent a rTKA using the fully cemented SMILES rotating hinge prosthesis between 2005 to 2018. Outcome measures included aseptic loosening, reoperations, revision for any cause, complications, and survivorship. Patients and implant survivorship data were identified through both prospectively collected local hospital electronic databases and linked data from the National Joint Registry/NHS Personal Demographic Service. Kaplan-Meier survival analysis was used at ten years.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 852 - 858
1 Jul 2022
Grothe T Günther K Hartmann A Blum S Haselhoff R Goronzy J

Aims

Head-taper corrosion is a cause of failure in total hip arthroplasty (THA). Recent reports have described an increasing number of V40 taper failures with adverse local tissue reaction (ALTR). However, the real incidence of V40 taper damage and its cause remain unknown. The aim of this study was to evaluate the long-term incidence of ALTR in a consecutive series of THAs using a V40 taper and identify potentially related factors.

Methods

Between January 2006 and June 2007, a total of 121 patients underwent THA using either an uncemented (Accolade I, made of Ti12Mo6Zr2Fe; Stryker, USA) or a cemented (ABG II, made of cobalt-chrome-molybdenum (CoCrMo); Stryker) femoral component, both with a V40 taper (Stryker). Uncemented acetabular components (Trident; Stryker) with crosslinked polyethylene liners and CoCr femoral heads of 36 mm diameter were used in all patients. At a mean folllow-up of 10.8 years (SD 1.1), 94 patients (79%) were eligible for follow-up (six patients had already undergone a revision, 15 had died, and six were lost to follow-up). A total of 85 THAs in 80 patients (mean age 61 years (24 to 75); 47 (56%) were female) underwent clinical and radiological evaluation, including the measurement of whole blood levels of cobalt and chrome. Metal artifact reduction sequence MRI scans of the hip were performed in 71 patients.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 317 - 323
18 Apr 2024
Zhu X Hu J Lin J Song G Xu H Lu J Tang Q Wang J

Aims

The aim of this study was to investigate the safety and efficacy of 3D-printed modular prostheses in patients who underwent joint-sparing limb salvage surgery (JSLSS) for malignant femoral diaphyseal bone tumours.

Methods

We retrospectively reviewed 17 patients (13 males and four females) with femoral diaphyseal tumours who underwent JSLSS in our hospital.


Bone & Joint 360
Vol. 12, Issue 1 | Pages 23 - 25
1 Feb 2023

The February 2023 Foot & Ankle Roundup360 looks at: Joint inflammatory response in ankle and pilon fractures; Tibiotalocalcaneal fusion with a custom cage; Topical application of tranexamic acid can reduce blood loss in calcaneal fractures; Risk factors for failure of total ankle arthroplasty; Pain catastrophizing: the same as pain forecasting?.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 115 - 120
1 Mar 2024
Ricotti RG Flevas DA Sokrab R Vigdorchik JM Mayman DJ Jerabek SA Sculco TP Sculco PK

Aims

Periprosthetic femoral fracture (PPF) is a major complication following total hip arthroplasty (THA). Uncemented femoral components are widely preferred in primary THA, but are associated with higher PPF risk than cemented components. Collared components have reduced PPF rates following uncemented primary THA compared to collarless components, while maintaining similar prosthetic designs. The purpose of this study was to analyze PPF rate between collarless and collared component designs in a consecutive cohort of posterior approach THAs performed by two high-volume surgeons.

Methods

This retrospective series included 1,888 uncemented primary THAs using the posterior approach performed by two surgeons (PKS, JMV) from January 2016 to December 2022. Both surgeons switched from collarless to collared components in mid-2020, which was the only change in surgical practice. Data related to component design, PPF rate, and requirement for revision surgery were collected. A total of 1,123 patients (59.5%) received a collarless femoral component and 765 (40.5%) received a collared component. PPFs were identified using medical records and radiological imaging. Fracture rates between collared and collarless components were analyzed. Power analysis confirmed 80% power of the sample to detect a significant difference in PPF rates, and a Fisher’s exact test was performed to determine an association between collared and collarless component use on PPF rates.


Bone & Joint 360
Vol. 12, Issue 6 | Pages 24 - 27
1 Dec 2023

The December 2023 Foot & Ankle Roundup360 looks at: Subchondral bone cysts remodel after correction of varus deformity in ankle arthritis; 3D-printed modular endoprosthesis reconstruction following total calcanectomy; Percutaneous partial bone excision in the management of diabetic toe osteomyelitis; Hemiepiphysiodesis is a viable surgical option for Juvenile hallux valgus; Ankle arthroplasty vs arthrodesis: which comes out on top?; Patient-related risk factors for poorer outcome following total ankle arthroplasty; The Outcomes in Ankle Replacement Study.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 286 - 293
9 Apr 2024
Upadhyay PK Kumar V Mirza SB Shah N

Aims

This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component.

Methods

We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1000 - 1007
1 Sep 2024
Gong T Lu M Sheng H Li Z Zhou Y Luo Y Min L Tu C

Aims

Endoprosthetic reconstruction following distal femur tumour resection has been widely advocated. In this paper, we present the design of an uncemented endoprosthesis system featuring a short, curved stem, with the goal of enhancing long-term survivorship and functional outcomes.

Methods

This study involved patients who underwent implantation of an uncemented distal femoral endoprosthesis with a short and curved stem between 2014 and 2019. Functional outcomes were assessed using the 1993 version of the Musculoskeletal Tumour Society (MSTS-93) score. Additionally, we quantified five types of complications and assessed osseointegration radiologically. The survivorship of the endoprosthesis was evaluated according to two endpoints. A total of 134 patients with a median age of 26 years (IQR 16 to 41) were included in our study. The median follow-up time was 61 months (IQR 56 to 76), and the median functional MSTS-93 was 83% (IQR 73 to 91) postoperatively.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1501 - 1508
1 Nov 2010
Donell ST Darrah C Nolan JF Wimhurst J Toms A Barker THW Case CP Tucker JK

Metal-on-metal total hip replacement has been targeted at younger patients with anticipated long-term survival, but the effect of the production of metal ions is a concern because of their possible toxicity to cells. We have reviewed the results of the use of the Ultima hybrid metal-on-metal total hip replacement, with a cemented polished tapered femoral component with a 28 mm diameter and a cobalt-chrome (CoCr) modular head, articulating with a 28 mm CoCr acetabular bearing surface secured in a titanium alloy uncemented shell. Between 1997 and 2004, 545 patients with 652 affected hips underwent replacement using this system. Up to 31 January 2008, 90 (13.8%) hips in 82 patients had been revised. Pain was the sole reason for revision in 44 hips (48.9%) of which 35 had normal plain radiographs. Peri-prosthetic fractures occurred in 17 hips (18.9%) with early dislocation in three (3.3%) and late dislocation in 16 (17.8%). Infection was found in nine hips (10.0%). At operation, a range of changes was noted including cavities containing cloudy fluid under pressure, necrotic soft tissues with avulsed tendons and denuded osteonecrotic upper femora. Corrosion was frequently observed on the retrieved cemented part of the femoral component. Typically, the peri-operative findings confirmed those found on pre-operative metal artefact reduction sequence MRI and histological examination showed severe necrosis. Metal artefact reduction sequence MRI proved to be useful when investigating these patients with pain in the absence of adverse plain radiological features


Bone & Joint Open
Vol. 5, Issue 6 | Pages 457 - 463
2 Jun 2024
Coviello M Abate A Maccagnano G Ippolito F Nappi V Abbaticchio AM Caiaffa E Caiaffa V

Aims

Proximal femur fractures treatment can involve anterograde nailing with a single or double cephalic screw. An undesirable failure for this fixation is screw cut-out. In a single-screw nail, a tip-apex distance (TAD) greater than 25 mm has been associated with an increased risk of cut-out. The aim of the study was to examine the role of TAD as a risk factor in a cephalic double-screw nail.

Methods

A retrospective study was conducted on 112 patients treated for intertrochanteric femur fracture with a double proximal screw nail (Endovis BA2; EBA2) from January to September 2021. The analyzed variables were age, sex, BMI, comorbidities, fracture type, side, time of surgery, quality of reduction, pre-existing therapy with bisphosphonate for osteoporosis, screw placement in two different views, and TAD. The last follow-up was at 12 months. Logistic regression was used to study the potential factors of screw cut-out, and receiver operating characteristic curve to identify the threshold value.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims

This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model.

Methods

The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 151 - 157
1 Feb 2024
Dreyer L Bader C Flörkemeier T Wagner M

Aims

The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection.

Methods

We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1099 - 1107
1 Oct 2023
Henry JK Shaffrey I Wishman M Palma Munita J Zhu J Cody E Ellis S Deland J Demetracopoulos C

Aims

The Vantage Total Ankle System is a fourth-generation low-profile fixed-bearing implant that has been available since 2016. We aimed to describe our early experience with this implant.

Methods

This is a single-centre retrospective review of patients who underwent primary total ankle arthroplasty (TAA) with a Vantage implant between November 2017 and February 2020, with a minimum of two years’ follow-up. Four surgeons contributed patients. The primary outcome was reoperation and revision rate of the Vantage implant at two years. Secondary outcomes included radiological alignment, peri-implant complications, and pre- and postoperative patient-reported outcomes.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 584 - 593
15 Aug 2023
Sainio H Rämö L Reito A Silvasti-Lundell M Lindahl J

Aims

Several previously identified patient-, injury-, and treatment-related factors are associated with the development of nonunion in distal femur fractures. However, the predictive value of these factors is not well defined. We aimed to assess the predictive ability of previously identified risk factors in the development of nonunion leading to secondary surgery in distal femur fractures.

Methods

We conducted a retrospective cohort study of adult patients with traumatic distal femur fracture treated with lateral locking plate between 2009 and 2018. The patients who underwent secondary surgery due to fracture healing problem or plate failure were considered having nonunion. Background knowledge of risk factors of distal femur fracture nonunion based on previous literature was used to form an initial set of variables. A logistic regression model was used with previously identified patient- and injury-related variables (age, sex, BMI, diabetes, smoking, periprosthetic fracture, open fracture, trauma energy, fracture zone length, fracture comminution, medial side comminution) in the first analysis and with treatment-related variables (different surgeon-controlled factors, e.g. plate length, screw placement, and proximal fixation) in the second analysis to predict the nonunion leading to secondary surgery in distal femur fractures.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims

Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage.

Methods

After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims

Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI).

Methods

A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims

A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes.

Methods

ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 463 - 472
1 Apr 2015
Panagiotidou A Meswania J Osman K Bolland B Latham J Skinner J Haddad FS Hart A Blunn G

The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt–chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. Cite this article: Bone Joint J 2015;97-B:463–72


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 3 | Pages 452 - 456
1 May 1992
Maistrelli G Mahomed N Garbuz D Fornasier V Harrington I Binnington A

In 33 dogs we implanted femoral stems made either of carbon composite, some coated with hydroxyapatite, or of titanium alloy with a porous coating. Osseointegration was greater in the hydroxyapatite-coated than in the un-coated stems (p less than 0.001). Push-out tests, at an average of 7.2 months after implantation, showed a six-fold increase in interface shear strength and a twelve-fold increase in shear stiffness in the hydroxyapatite-coated group compared with noncoated implants. The highest shear-strength values were found in the porous-coated titanium alloy stems, around which there was also the most resorptive bone remodelling