Injuries to the quadriceps muscle group are common in athletes performing high-speed running and kicking sports. The complex anatomy of the rectus femoris puts it at greatest risk of injury. There is variability in prognosis in the literature, with reinjury rates as high as 67% in the severe graded proximal tear. Studies have highlighted that athletes can reinjure after nonoperative management, and some benefit may be derived from surgical repair to restore function and return to sport (RTS). This injury is potentially career-threatening in the elite-level athlete, and we aim to highlight the key recent literature on interventions to restore strength and function to allow early RTS while reducing the risk of injury recurrence. This article reviews the optimal diagnostic strategies and classification of quadriceps injuries. We highlight the unique anatomy of each injury on MRI and the outcomes of both nonoperative and operative treatment, providing an evidence-based management framework for athletes. Cite this article:
Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article:
Non-accidental injury (NAI) in children includes orthopaedic trauma throughout the skeleton. Fractures with soft-tissue injuries constitute the majority of manifestations of physical abuse in children. Fracture and injury patterns vary with age and development, and NAI is intrinsically related to the mobility of the child. No fracture in isolation is pathognomonic of NAI, but specific abuse-related injuries include
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article:
A modular femoral head–neck junction has practical
advantages in total hip replacement. Taper fretting and corrosion
have so far been an infrequent cause of revision. The role of design
and manufacturing variables continues to be debated. Over the past
decade several changes in technology and clinical practice might
result in an increase in clinically significant taper fretting and
corrosion. Those factors include an increased usage of large diameter
(36 mm) heads, reduced femoral neck and taper dimensions, greater
variability in taper assembly with smaller incision surgery, and
higher taper stresses due to increased patient weight and/or physical
activity. Additional studies are needed to determine the role of
taper assembly compared with design, manufacturing and other implant
variables. Cite this article:
Despite advances in contemporary hip and knee
arthroplasty, blood loss continues to be an issue. Though blood transfusion
has long been used to treat post-operative anemia, the associated
risks are well established. The objective of this article is to
present two practical and effective approaches to minimising blood
loss and transfusion rates in hip and knee arthroplasty: the use
of antifibrinolytic medications such as tranexamic acid and the
adoption of more conservative transfusion indications.
High energy fractures of the pelvis are a challenging problem both in the immediate post-injury phase and later when definitive fixation is undertaken. No single management algorithm can be applied because of associated injuries and the wide variety of trauma systems that have evolved around the world. Initial management is aimed at saving life and this is most likely to be achieved with an approach that seeks to identify and treat life-threatening injuries in order of priority. Early mortality after a pelvic fracture is most commonly due to major haemorrhage or catastrophic brain injury. In this article we review the role of pelvic binders, angiographic embolisation, pelvic packing, early internal fixation and blood transfusion with regard to controlling haemorrhage. Definitive fixation seeks to prevent deformity and reduce complications. We believe this should be undertaken by specialist surgeons in a hospital resourced, equipped and staffed to manage the whole spectrum of major trauma. We describe the most common modes of internal fixation by injury type and review the factors that influence delayed mortality, adverse functional outcome, sexual dysfunction and venous thromboembolism.
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.
Neurological conditions affecting the hip pose a considerable challenge in replacement surgery since poor and imbalanced muscle tone predisposes to dislocation and loosening. Consequently, total hip replacement (THR) is rarely performed in such patients. In a systematic review of the literature concerning THR in neurological conditions, we found only 13 studies which described the outcome. We have reviewed the evidence and discussed the technical challenges of this procedure in patients with cerebral palsy, Parkinson’s disease, poliomyelitis and following a cerebrovascular accident, spinal injury or development of a Charcot joint. Contrary to traditional perceptions, THR can give a good outcome in these often severly disabled patients.
Fractures of the proximal interphalangeal joint include a wide spectrum of injuries, from stable avulsion fractures to complex fracture-dislocations. Stability of the joint is paramount in determining the appropriate treatment, which should aim to facilitate early mobilisation and restoration of function.
The operative treatment of displaced fractures of the tibial plateau is challenging. Recent developments in the techniques of internal fixation, including the development of locked plating and minimal invasive techniques have changed the treatment of these fractures. We review current surgical approaches and techniques, improved devices for internal fixation and the clinical outcome after utilisation of new methods for locked plating.
Technological advances and shorter rescue times have allowed early and effective resuscitation after trauma and brought attention to the host response to injury. Trauma patients are at risk of progressive organ dysfunction from what appears to be an uncontrolled immune response. The availability of improved techniques of molecular diagnosis has allowed investigation of the role of genetic variations in the inflammatory response to post-traumatic complications and particularly to sepsis. This review examines the current evidence for the genetic predisposition to adverse outcome after trauma. While there is evidence supporting the involvement of different polymorphic variants of genes in determining the post-traumatic course and the development of complications, larger-scale studies are needed to improve the understanding of how genetic variability influences the responses to post-traumatic complications and pharmacotherapy.
This article considers the establishment, purpose and conduct of knee arthroplasty registers using the Swedish register as an example. The methods of collection of appropriate data, the cost, and the ways in which this information may be used are considered.
The dismal outcome of tuberculosis of the spine in the pre-antibiotic era has improved significantly because of the use of potent antitubercular drugs, modern diagnostic aids and advances in surgical management. MRI allows the diagnosis of a tuberculous lesion, with a sensitivity of 100% and specificity of 88%, well before deformity develops. Neurological deficit and deformity are the worst complications of spinal tuberculosis. Patients treated conservatively show an increase in deformity of about 15°. In children, a kyphosis continues to increase with growth even after the lesion has healed. Tuberculosis of the spine is a medical disease which is not primarily treated surgically, but operation is required to prevent and treat the complications. Panvertebral lesions, therapeutically refractory disease, severe kyphosis, a developing neurological deficit, lack of improvement or deterioration are indications for surgery. Patients who present with a kyphosis of 60° or more, or one which is likely to progress, require anterior decompression, posterior shortening, posterior instrumented stabilisation and anterior and posterior bone grafting in the active stage of the disease. Late-onset paraplegia is best prevented rather than treated. The awareness and suspicion of an atypical presentation of spinal tuberculosis should be high in order to obtain a good outcome. Therapeutically refractory cases of tuberculosis of the spine are increasing in association with the presence of HIV and multidrug-resistant tuberculosis.
Although the importance of sound statistical principles in the design and analysis of data has gained prominence in recent years, biostatistics, the application of statistics to the analysis of biological and medical data, is still a subject which is poorly understood and often mishandled. This review introduces, in the context of orthopaedic research, the terminology and the principles involved in simple data analysis, and outlines areas of medical statistics that have gained prominence in recent years. It also lists and provides an insight into some of the more common errors that occur in published orthopaedic journals and which are frequently encountered at the review stage in papers submitted to the
Polymethylmethacrylate remains one of the most enduring materials in orthopaedic surgery. It has a central role in the success of total joint replacement and is also used in newer techniques such as percutaneous vertebroplasty and kyphoplasty. This article describes the current uses and limitations of polymethylmethacrylate in orthopaedic surgery. It focuses on its mechanical and chemical properties and links these to its clinical performance. The behaviour of antibiotic-loaded bone cement are discussed, together with areas of research that are now shedding light upon the behaviour of this unique biomaterial.
This review discusses the causes, outcome and prevention of whiplash injury, which costs the economy of the United Kingdom approximately £3.64 billion per annum. Most cases occur as the result of rear-end vehicle collisions at speeds of less than 14 mph. Patients present with neck pain and stiffness, occipital headache, thoracolumbar back pain and upper-limb pain and paraesthesia. Over 66% make a full recovery and 2% are permanently disabled. The outcome can be predicted in 70% after three months.
Methicillin-resistant Staphylococcus aureus (MRSA) has become a ubiquitous bacterium in both the hospital and community setting. There are two major subclassifications of MRSA, community-acquired and healthcare-acquired, each with differing pathogenicity and management. MRSA is increasingly responsible for infections in otherwise healthy, active adults. Local outbreaks affect both professional and amateur athletes and there is increasing public awareness of the issue. Health-acquired MRSA has major cost and outcome implications for patients and hospitals. The increasing prevalence and severity of MRSA means that the orthopaedic community should have a basic knowledge of the bacterium, its presentation and options for treatment. This paper examines the evolution of MRSA, analyses the spectrum of diseases produced by this bacterium and presents current prevention and treatment strategies for orthopaedic infections from MRSA.
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries. This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.
The management of injury to the distal tibiofibular syndesmosis remains controversial in the treatment of ankle fractures. Operative fixation usually involves the insertion of a metallic diastasis screw. There are a variety of options for the position and characterisation of the screw, the type of cortical fixation, and whether the screw should be removed prior to weight-bearing. This paper reviews the relevant anatomy, the clinical and radiological diagnosis and the mechanism of trauma and alternative methods of treatment for injuries to the syndesmosis.
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.
The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.
With the development of systems of trauma care the management of pelvic disruption has evolved and has become increasingly refined. The goal is to achieve an anatomical reduction and stable fixation of the fracture. This requires adequate visualisation for reduction of the fracture and the placement of fixation. Despite the advances in surgical approach and technique, the functional outcomes do not always produce the desired result. New methods of percutaneous treatment in conjunction with innovative computer-based imaging have evolved in an attempt to overcome the existing difficulties. This paper presents an overview of the technical aspects of percutaneous surgery of the pelvis and acetabulum.