Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 235 - 241
1 Feb 2010
van der Lugt JCT Valstar ER Witvoet-Braam SW Nelissen RGHH

Mechanical loosening which begins with early-onset migration of the prosthesis is the major reason for failure of the Souter-Strathclyde elbow replacement. In a prospective study of 18 Souter-Strathclyde replacements we evaluated the patterns of migration using roentgen stereophotogrammetric analysis. We had previously reported the short-term results after a follow-up of two years which we have now extended to a mean follow-up of 8.2 years (1 to 11.3). Migration was assessed along the co-ordinal axes and overall micromovement was expressed as the maximum total point movement. The alignment of the prosthesis and the presence of radiolucent lines were examined on conventional standardised radiographs. All the humeral components showed increased and variable patterns of migration at the extended follow-up and four humeral components were revised. The maximum total point movement at two years in the revised prostheses was 1.8 mm (. sd. 1.0) and in the non-revised 0.7 mm (. sd. 0.5, p = 0.01). Most humeral components migrated into external rotation resulting in an anterior and varus tilt. The ulnar components remained stable


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 757 - 761
1 Jun 2009
Nuttall D Haines JF Trail IA

In a prospective study between 2000 and 2005, 22 patients with primary osteoarthritis of the shoulder had a total shoulder arthroplasty with a standard five-pegged glenoid component, 12 with non-offset humeral head and ten with offset humeral head components. Over a period of 24 months the relative movement of the glenoid component with respect to the scapula was measured using radiostereometric analysis.

Nine glenoids needed reaming for erosion. There was a significant increase in rotation about all three axes with time (p < 0.001), the largest occurring about the longitudinal axis (anteversion-retroversion), with mean values of 3.8° and 1.9° for the non-offset and offset humeral head eroded subgroups, respectively. There was also a significant difference in rotation about the anteversion-retroversion axis (p = 0.01) and the varus-valgus (p < 0.001) z-axis between the two groups. The offset humeral head group reached a plateau at early follow-up with rotation about the z-axis, whereas the mean of the non-offset humeral head group at 24 months was three times greater than that of the offset group accounting for the highly significant difference between them.