In total knee arthroplasty (TKA), blood loss continues internally after surgery is complete. Typically, the total loss over 48 postoperative hours can be around 1,300 ml, with most occurring within the first 24 hours. We hypothesize that the full potential of tranexamic acid (TXA) to decrease TKA blood loss has not yet been harnessed because it is rarely used beyond the intraoperative period, and is usually withheld from ‘high-risk’ patients with a history of thromboembolic, cardiovascular, or cerebrovascular disease, a patient group who would benefit greatly from a reduced blood loss. TRAC-24 was a prospective, phase IV, single-centre, open label, parallel group, randomized controlled trial on patients undergoing TKA, including those labelled as high-risk. The primary outcome was indirect calculated blood loss (IBL) at 48 hours. Group 1 received 1 g intravenous (IV) TXA at the time of surgery and an additional 24-hour postoperative oral regime of four 1 g doses, while Group 2 only received the intraoperative dose and Group 3 did not receive any TXA.Aims
Methods
The aim of this study was to identify the most effective regimen
of multiple doses of oral tranexamic acid (TXA) in achieving maximum
reduction of blood loss in total knee arthroplasty (TKA). In this randomized controlled trial, 200 patients were randomized
to receive a single dose of 2.0 g of TXA orally two hours preoperatively
(group A), a single dose of TXA followed by 1.0 g orally three hours
postoperatively (group B), a single dose of TXA followed by 1.0 g
three and nine hours postoperatively (group C), or a single dose
of TXA followed by 1.0 g orally three, nine, and 15 hours postoperatively
(group D). All patients followed a routine enhanced-recovery protocol.
The primary outcome measure was the total blood loss. Secondary
outcome measures were hidden blood loss (HBL), reduction in the
level of haemoglobin, the rate of transfusion and adverse events.Aims
Patients and Methods
Seligman’s theory of causal attribution predicts that patients with a pessimistic explanatory style will have less favourable health outcomes. We identified 702 patients who had undergone 894 primary total knee replacements between 1993 and 2005, who responded to follow-up surveys at two (n = 783 knee replacements) and/or five years (n = 443 knee replacements) and had also completed the Minnesota Multiphasic Personality Inventory long before the joint replacement (median = 16.6 and 14.5 years for two- and five-year cohorts, respectively). Scores from the Minnesota Multiphasic Personality Inventory Optimism-Pessimism scale were used to categorise patients as pessimistic (t-score >
60) or non-pessimistic (t-score ≤ 60). Multivariate logistic regression models assessing the effect of pessimistic explanatory style on pain or improvement in knee function were adjusted for gender, age, distance from the place of treatment and depression score. Pessimists reported (a) significantly more moderate or severe pain at two years with odds ratio 2.21 (95% confidence interval (CI) 1.12 to 4.35; p = 0.02), but not at five years when the odds ratio was 1.21 (95% CI 0.51 to 2.83; p = 0.67); and (b) less improvement in knee function at two years when the odds ratio was 0.53 (95% CI 0.30 to 0.96; p = 0.04), but not at five years when the odds ratio was 1.26 (95% CI 0.57 to 2.77; p = 0.57). No significant associations with moderate or severe limitation of activity were seen at two or five years. We conclude that a pessimistic explanatory style is associated with worse pain and functional outcomes two years after total knee replacement.