Advertisement for orthosearch.org.uk
Results 1 - 50 of 484
Results per page:
Bone & Joint 360
Vol. 13, Issue 5 | Pages 42 - 44
1 Oct 2024

The October 2024 Oncology Roundup. 360. looks at: Composite reconstruction: is it the answer for pelvic resections?; Can the cartilaginous thickness determine the risk of malignancy in pelvic cartilaginous tumours, and how accurate is the preoperative biopsy of these tumours?; Incidence and survival outcomes of patients with high-grade appendicular bone sarcoma and isolated regional lymph node metastasis; Improved metastatic-free survival after systematic re-excision following complete macroscopic unplanned excision of limb or trunk soft-tissue sarcoma; UK guidelines for the management of soft-tissue sarcomas; Current management of desmoid tumours: a review


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims. Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA). Methods. A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion. Results. RSA analysis showed a small increase in all translation and rotational values up to six months postoperatively, consistent with settling of the implant. The mean values plateaued by 12 months, with no evidence of further migration. In four patients, there was significant variation outside the mean, which corresponded to postoperative complications. There was a significant improvement in the clinical and patient-reported outcomes from the preoperative values to those at two years postoperatively (p < 0.001). Conclusion. These findings show, using RSA, that a glenoid baseplate composite of a trabecular titanium peg with autograft stabilizes within the glenoid about 12 months after surgery, and reinforce findings from a previous study of this implant/graft with CT scans at two years postoperatively, indicating that this type of structural composite results in sound early fixation. Cite this article: Bone Joint J 2023;105-B(8):912–919


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1174 - 1179
1 Oct 2022
Jamshidi K Bagherifard A Mirzaei A

Aims. Osteoarticular reconstruction of the distal femur in childhood has the advantage of preserving the tibial physis. However, due to the small size of the distal femur, matching the host bone with an osteoarticular allograft is challenging. In this study, we compared the outcomes and complications of a resurfaced allograft-prosthesis composite (rAPC) with those of an osteoarticular allograft to reconstruct the distal femur in children. Methods. A retrospective analysis of 33 skeletally immature children with a malignant tumour of the distal femur, who underwent resection and reconstruction with a rAPC (n = 15) or osteoarticular allograft (n = 18), was conducted. The median age of the patients was ten years (interquartile range (IQR) 9 to 11) in the osteoarticular allograft group and nine years (IQR 8 to 10) in the rAPC group (p = 0.781). The median follow-up of the patients was seven years (IQR 4 to 8) in the osteoarticular allograft group and six years (IQR 3 to 7) in the rAPC group (p = 0.483). Limb function was evaluated using the Musculoskeletal Tumor Society (MSTS) score. Results. At final follow-up, the knee was unstable in 9/18 patients (50%) in the osteoarticular allograft group and 2/15 patients (13%) in the rAPC group (p = 0.026). The median range of motion (ROM) of the knee was 117° (IQR 115° to 120°) in the osteoarticular allograft group and 100° (IQR 95° to 105°) in the rAPC group (p < 0.001). The median MSTS score was 25 (IQR 23 to 26) in the osteoarticular allograft group and 28 (IQR 26 to 29) in the rAPC group (p = 0.007). Osteoarthritic change was detected in 11/18 patients (61%) in the osteoarticular allograft group and in 4/15 (26%) patients in the rAPC group (p = 0.048). Conclusion. In our series, a resurfaced allograft-prosthesis composite provided better knee stability and function, with a lower rate of osteoarthritis; an osteoarticular allograft was associated with better knee ROM. Cite this article: Bone Joint J 2022;104-B(10):1174–1179


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective. In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods. The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results. The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions. The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives. The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. Methods. A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. Results. No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Conclusions. Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70–7


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 349 - 355
1 Mar 2010
Babis GC Sakellariou VI O’Connor MI Hanssen AD Sim FH

We report the use of an allograft prosthetic composite for reconstruction of the skeletal defect in complex revision total hip replacement for severe proximal femoral bone loss. Between 1986 and 1999, 72 patients (20 men, 52 women) with a mean age of 59.9 years (38 to 78) underwent reconstruction using this technique. At a mean follow-up of 12 years (8 to 20) 57 patients were alive, 14 had died and one was lost to follow-up. Further revision was performed in 19 hips at a mean of 44.5 months (11 to 153) post-operatively. Causes of failure were aseptic loosening in four, allograft resorption in three, allograft nonunion in two, allograft fracture in four, fracture of the stem in one, and deep infection in five. The survivorship of the allograft-prosthesis composite at ten years was 69.0% (95% confidence interval 67.7 to 70.3) with 26 patients remaining at risk. Survivorship was statistically significantly affected by the severity of the pre-operative bone loss (Paprosky type IV; p = 0.019), the number of previous hip revisions exceeding two (p = 0.047), and the length of the allograft used (p = 0.005)


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1382 - 1388
1 Oct 2011
Amirfeyz R Stanley D

We studied, ten patients (11 elbows) who had undergone 14 allograft-prosthesis composite reconstructions following failure of a previous total elbow replacement with massive structural bone loss. There were nine women and one man with a mean age of 64 years (40 to 84), who were reviewed at a mean of 75 months (24 to 213). One patient developed a deep infection after 26 months and had the allograft-prosthesis composite removed, and two patients had mild pain. The median flexion-extension arc was 100° (95% confidence interval (CI) 76° to 124°). With the exception of the patient who had the infected failure, all the patients could use their elbows comfortably without splints or braces for activities of daily living. The mean Mayo Elbow Performance Index improved from 9.5 (95% CI 4.4 to 14.7) pre-operatively to 74 (95% CI 62.4 to 84.9) at final review. Radiologically, the rate of partial resorption was similar in the humeral and ulnar allografts (three of six and four of eight, respectively; p > 0.999). The patterns of resorption, however, were different. Union at the host-bone-allograft junction was also different between the humeral and ulnar allografts (one of six and seven of eight showing union, respectively; p = 0.03). At medium-term follow-up, allograft-prosthesis composite reconstruction appears to be a useful salvage technique for failed elbow replacements with massive bone loss. The effects of allograft resorption and host-bone-allograft junctional union on the longevity of allograft-prosthesis composite reconstruction, however, remain unknown, and it is our view that these patients should remain under long-term regular review


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives. The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. Methods. The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. Results. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. Conclusion. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56–64


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 524 - 529
1 Apr 2020
Jamshidi K Mirkazemi M Gharedaghi M Izanloo A Mohammadpour M Pisoudeh K Bagherifard A Mirzaei A

Aims. The consensus is that bipolar hemiarthroplasty (BHA) in allograft-prosthesis composite (APC) reconstruction of the proximal femur following primary tumour resection provides more stability than total hip arthroplasty (THA). However, no comparative study has been performed. In this study, we have compared the outcome and complication rates of these two methods. Methods. In a retrospective study, 57 patients who underwent APC reconstruction of proximal femur following the primary tumour resection, either using BHA (29) or THA (28), were included. Functional outcome was assessed using the Musculoskeletal Tumour Society (MSTS) scoring system and Harris Hip Score (HHS). Postoperative complications of the two techniques were also compared. Results. The mean follow-up of the patients was 8.3 years (standard deviation (SD) 5.5) in the BHA and 6.9 years (SD 4.7) in the THA group. The mean HHS was 65 (SD 16.6) in the BHA group and 88 (SD 11.9) in the THA group (p = 0.036). The mean MSTS score of the patients was 73.3% (SD 16.1%) in the BHA and 86.7% (SD 12.2%) in the THA group (p = 0.041). Limping was recorded in 19 patients (65.5%) of the BHA group and five patients (17.8%) of the THA group (p < 0.001). Dislocation occurred in three patients (10.3%) of the BHA group and two patients (7.1%) of the THA group. Conclusion. While the dislocation rate was not higher in THA than with BHA, the functional outcome was significantly superior. Based on our results, we recommend THA in APC reconstruction of the proximal femur. Cite this article: Bone Joint J 2020;102-B(4):524–529


The Journal of Bone & Joint Surgery British Volume
Vol. 46-B, Issue 1 | Pages 110 - 140
1 Feb 1964
Burwell RG

1. Previous immunological studies have shown that homografts of fresh marrow-free iliac bone are only weakly, if at all, antigenic. 2. In view of this finding an attempt was made to produce a foreign bone graft capable of forming new bone as readily as an iliac autograft by the following method. Living cells of high osteogenic potential and of autologous type were introduced into the graft by combining homologous fresh marrow-free iliac bone with the animal's own red marrow to form a fresh composite homograft-autograft of cancellous bone. 3. Such fresh composite homograft-autografts were inserted into a muscular site in Wistar rats and removed for microscopical examination at intervals of one to seven days and at two, six and twelve weeks after transplantation. 4. It is found that bone and marrow together as a fresh composite homograft-autograft form considerably more new bone than do either of the components of the graft transplanted separately. Homografts of fresh marrow-free iliac bone form, in general, a small amount of early phase and late phase new bone. Autografts of red marrow transplanted alone to a muscular site formed new bone in thirteen to thirty experiments (43 per cent). 5. The stimulus to osteogenesis, and the cellular source of osteoblasts, in marrow autografts is discussed in the light of present knowledge. The concept is suggested that after its transplantation there develops in marrow an inductive system leading to osteoblastic differentiation and bone formation. It is proposed that the necrosis of a portion of a marrow graft liberates osteogenic substances which are taken up by primitive wandering cells derived from littoral cells lining the vascular sinusoids of the surviving portions of the marrow which are induced, thereby, to differentiate as osteoblasts. 6. The cellular source of osteoblasts in a fresh composite homograft-autograft of cancellous bone is discussed. It is deduced that the new bone is derived mainly from the contained marrow of the graft, by mechanisms similar to those leading to osteoblastic differentiation in transplanted autografts of marrow. 7. The stimulus to the greater formation of new bone by fresh composite autograft-homografts than by autografts of marrow transplanted alone is discussed. Two explanations are suggested: 1) a more extensive necrosis of marrow in a composite homograft-autograft than in marrow transplanted alone; and 2) an inductive effect of bone upon marrow. 8. The new bone formed by autografts of fresh marrow-containing iliac bone, it is concluded, is derived not only from osteoblasts on the surfaces of the grafted bone but also from primitive wandering cells derived from littoral cells lining the vascular sinusoids of the surviving portions of its marrow. 9. Mechanisms which may play a role in the histogenesis of woven bone are discussed. 10. The significance of the relation of bone and marrow is considered briefly in the light of knowledge concerning the venous patterns of bone and marrow


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 4 | Pages 586 - 591
1 Jul 1990
Ali M French T Hastings G Rae T Rushton N Ross E Wynn-Jones C

We compared the mechanical properties of carbon fibre composite bone plates with those of stainless steel and titanium. The composite plates have less stiffness with good fatigue properties. Tissue culture and small animal implantation confirmed the biocompatibility of the material. We also present a preliminary report on the use of the carbon fibre composite plates in 40 forearm fractures. All fractures united, 67% of them showing radiological remodelling within six months. There were no refractures or mechanical failures, but five fractures showed an unexpected reaction; this is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1098 - 1103
1 Aug 2011
Ruggieri P Mavrogenis AF Guerra G Mercuri M

We retrospectively studied 14 patients with proximal and diaphyseal tumours and disappearing bone (Gorham’s) disease of the humerus treated with wide resection and reconstruction using an allograft-resurfacing composite (ARC). There were ten women and four men, with a mean age of 35 years (8 to 69). At a mean follow-up of 25 months (10 to 89), two patients had a fracture of the allograft. In one of these it was revised with a similar ARC and in the other with an intercalary prosthesis. A further patient had an infection and a fracture of the allograft that was revised with a megaprosthesis. In all patients with an ARC, healing of the ARC-host bone interface was observed. One patient had failure of the locking mechanism of the total elbow replacement. The mean post-operative Musculoskeletal Tumor Society score for the upper extremity was 77% (46.7% to 86.7%), which represents good and excellent results; one patient had a poor result (46.7%). In the short term ARC effectively relieves pain and restores shoulder function in patients with wide resection of the proximal humerus. Fracture and infection remain significant complications


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 510 - 516
1 Apr 2011
Sugata Y Sotome S Yuasa M Hirano M Shinomiya K Okawa A

Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks. In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 3 | Pages 452 - 456
1 May 1992
Maistrelli G Mahomed N Garbuz D Fornasier V Harrington I Binnington A

In 33 dogs we implanted femoral stems made either of carbon composite, some coated with hydroxyapatite, or of titanium alloy with a porous coating. Osseointegration was greater in the hydroxyapatite-coated than in the un-coated stems (p less than 0.001). Push-out tests, at an average of 7.2 months after implantation, showed a six-fold increase in interface shear strength and a twelve-fold increase in shear stiffness in the hydroxyapatite-coated group compared with noncoated implants. The highest shear-strength values were found in the porous-coated titanium alloy stems, around which there was also the most resorptive bone remodelling


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 1 | Pages 111 - 114
1 Jan 1993
Korkusuz F Uchida A Shinto Y Araki N Inoue K Ono K

The efficacy of locally implanted antibiotic-calcium hydroxyapatite ceramic composites was investigated for the treatment of experimentally produced, implant-related osteomyelitis in rats. High concentrations of antibiotics were detected at the site of infection and bacteria were eradicated without removal of the metal implants. Parenteral antibiotics and surgical debridement, alone or in combination with antibiotic-impregnated acrylic bone cement, all failed to eradicate the infections


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 8 | Pages 1156 - 1161
1 Nov 2002
Chen WM Chen TH Huang CK Chiang CC Lo WH

Autogenous bone graft which has been either autoclaved or irradiated is commonly used in oriental countries as an alternative to allograft. We started to use the technique of extracorporeal irradiation of the resected specimen and reimplantation (ECIR) in 1991. There was, however, a high incidence of fracture of the irradiated bone and loss of articular cartilage. In an attempt to reduce these complications, we combined the irradiated autograft with a conventional arthroplasty. Between 1995 and 1998, 14 patients underwent limb salvage by this method. Seven had an osteosarcoma, two bony metastases, three a chondrosarcoma, one a malignant fibrous histiocytoma, and one a leiomyosarcoma. Ten tumours were located in the proximal femur, two in the proximal humerus, and two in the distal femur. One patient who had a solitary metastasis in the proximal part of the left femur died from lung metastases 13 months after operation. The remaining 13 patients were alive and without evidence of local recurrence or distant metastases at a mean follow-up of 43 months (28 to 72). Postoperative palsy of the sciatic nerve occurred in one patient, but no complications such as wound infection, fracture, or nonunion were seen. All host-irradiated bone junctions healed uneventfully within eight months. Using the Enneking functional evaluation system, the mean postoperative score for all 14 patients was 80% (57 to 93). The use of irradiated autograft prosthesis composites reduces the complications of ECIR and gives good functional results. It may be a good alternative in limb-salvage surgery, especially in countries where it is difficult to obtain allografts


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1106 - 1110
1 Aug 2014
Malhotra R Kiran Kumar GN K. Digge V Kumar V

Giant cell tumour is the most common aggressive benign tumour of the musculoskeletal system and has a high rate of local recurrence. When it occurs in proximity to the hip, reconstruction of the joint is a challenge. Options for reconstruction after wide resection include the use of a megaprosthesis or an allograft-prosthesis composite. We performed a clinical and radiological study to evaluate the functional results of a proximal femoral allograft-prosthesis composite in the treatment of proximal femoral giant cell tumour after wide resection. This was an observational study, between 2006 and 2012, of 18 patients with a mean age of 32 years (28 to 42) and a mean follow-up of 54 months (18 to 79). We achieved excellent outcomes using Harris Hip Score in 13 patients and a good outcome in five. All allografts united. There were no complications such as infection, failure, fracture or resorption of the graft, or recurrent tumour. Resection and reconstruction of giant cell tumours with proximal femoral allograft–prosthesis composite is a better option than using a prosthesis considering preservation of bone stock and excellent restoration of function. A good result requires demanding bone banking techniques, effective measures to prevent infection and stability at the allograft-host junction. . Cite this article: Bone Joint J 2014; 96-B:1106–10


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 2 | Pages 330 - 331
1 Mar 1993
Younge D Dafniotis O


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims. There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). Methods. The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites. Results. Following the addition of RIF to CaS/HA-VAN/GEN, adequate injectability and setting of the CaS/HA composites were noted. Sustained release of RIF above the minimum inhibitory concentrations of S. aureus was observed until study endpoint (day 35). Only combinations of CaS/HA-VAN/GEN + RIF exhibited antibacterial and antibiofilm effects yielding no viable bacteria at study endpoint. The S. aureus strains developed resistance to RIF when biofilms were subjected to CaS/HA-RIF alone but not with CaS/HA-VAN/GEN + RIF. Conclusion. Our in vitro results indicate that biphasic CaS/HA loaded with VAN or GEN could be used as a carrier for RIF for local delivery in clinically demanding bone infections. Cite this article: Bone Joint Res 2022;11(11):787–802


Aims. To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Methods. Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 10. 6. ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed. Results. In the graft reseeded with ACL-derived cells, a large number of elongated cells that integrated into the matrix were evident at day 3 and day 7. However, in the graft reseeded with ADMSCs, only a small number of elongated cells were found integrated into the matrix. Immunofluorescence for Ki-67 and type I collagen confirmed the pronounced production of type I collagen by Ki-67-positive ACL-derived cells integrated into the ECM. A messenger RNA (mRNA) expression assay demonstrated significantly higher gene expression levels of types I (p = 0.013) and III (p = 0.050) collagen in the composites reseeded with ACL-derived cells than ADMSCs. Conclusion. ACL-derived cells, when reseeded to acellularized tendon graft, demonstrated earlier better survival and integration in the tendon ECM and resulted in higher gene expression levels of collagen, which may be essential to the normal ligamentization process compared to ADMSCs. Cite this article: Bone Joint Res 2022;11(11):777–786


Bone & Joint 360
Vol. 13, Issue 1 | Pages 13 - 16
1 Feb 2024

The February 2024 Hip & Pelvis Roundup. 360. looks at: Trial of vancomycin and cefazolin as surgical prophylaxis in arthroplasty; Is preoperative posterior femoral neck tilt a risk factor for fixation failure? Cemented versus uncemented hemiarthroplasty for displaced intracapsular fractures of the hip; Periprosthetic fractures in larger hydroxyapatite-coated stems: are collared stems a better alternative for total hip arthroplasty?; Postoperative periprosthetic fracture following hip arthroplasty with a polished taper slip versus composite beam stem; Is oral tranexamic acid as good as intravenous?; Stem design and the risk of early periprosthetic femur fractures following THA in elderly patients; Does powered femoral broaching compromise patient safety in total hip arthroplasty?


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 11 - 15
1 Jan 2024
Jain S Lamb JN Pandit H

Polished taper-slip (PTS) cemented stems have an excellent clinical track record and are the most common stem type used in primary total hip arthroplasty (THA) in the UK. Due to low rates of aseptic loosening, they have largely replaced more traditional composite beam (CB) cemented stems. However, there is now emerging evidence from multiple joint registries that PTS stems are associated with higher rates of postoperative periprosthetic femoral fracture (PFF) compared to their CB stem counterparts. The risk of both intraoperative and postoperative PFF remains greater with uncemented stems compared to either of these cemented stem subtypes. PFF continues to be a devastating complication following primary THA and is associated with high complication and mortality rates. Recent efforts have focused on identifying implant-related risk factors for PFF in order to guide preventative strategies, and therefore the purpose of this article is to present the current evidence on the effect of cemented femoral stem design on the risk of PFF. Cite this article: Bone Joint J 2024;106-B(1):11–15


Bone & Joint Open
Vol. 3, Issue 9 | Pages 733 - 740
21 Sep 2022
Sacchetti F Aston W Pollock R Gikas P Cuomo P Gerrand C

Aims. The proximal tibia (PT) is the anatomical site most frequently affected by primary bone tumours after the distal femur. Reconstruction of the PT remains challenging because of the poor soft-tissue cover and the need to reconstruct the extensor mechanism. Reconstructive techniques include implantation of massive endoprosthesis (megaprosthesis), osteoarticular allografts (OAs), or allograft-prosthesis composites (APCs). Methods. This was a retrospective analysis of clinical data relating to patients who underwent proximal tibial arthroplasty in our regional bone tumour centre from 2010 to 2018. Results. A total of 76 patients fulfilled the inclusion criteria and were included in the study. Mean age at surgery was 43.2 years (12 to 86 (SD 21)). The mean follow-up period was 60.1 months (5.4 to 353). In total 21 failures were identified, giving an overall failure rate of 27.6%. Prosthesis survival at five years was 75.5%, and at ten years was 59%. At last follow-up, mean knee flexion was 89.8° (SD 36°) with a mean extensor lag of 18.1° (SD 24°). In univariate analysis, factors associated with better survival of the prosthesis were a malignant or metastatic cancer diagnosis (versus benign), with a five- and ten-year survival of 78.9% and 65.7% versus 37.5% (p = 0.045), while in-hospital length of stay longer than nine days was also associated with better prognosis with five- and ten-year survival rates at 84% and 84% versus 60% and 16% (p < 0.001). In multivariate analysis, only in-hospital length of stay was associated with longer survival (hazard ratio (HR) 0.23, 95% confidence interval (CI) 0.08 to 0.66). Conclusion. We have shown that proximal tibial arthroplasty with endoprosthesis is a safe and reliable method for reconstruction in patients treated for orthopaedic oncological conditions. Either modular or custom implants in this series performed well. Cite this article: Bone Jt Open 2022;3(9):733–740


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 174 - 181
1 Feb 2024
Mandalia KP Brodeur PG Li LT Ives K Cruz Jr. AI Shah SS

Aims. The aim of this study was to characterize the influence of social deprivation on the rate of complications, readmissions, and revisions following primary total shoulder arthroplasty (TSA), using the Social Deprivation Index (SDI). The SDI is a composite measurement, in percentages, of seven demographic characteristics: living in poverty, with < 12 years of education, single-parent households, living in rented or overcrowded housing, households without a car, and unemployed adults aged < 65 years. Methods. Patients aged ≥ 40 years, who underwent primary TSA between 2011 and 2017, were identified using International Classification of Diseases (ICD)-9 Clinical Modification and ICD-10 procedure codes for TSA in the New York Statewide Planning and Research Cooperative System database. Readmission, reoperation, and other complications were analyzed using multivariable Cox proportional hazards regression controlling for SDI, age, ethnicity, insurance status, and Charlson Comorbidity Index. Results. A total of 17,698 patients with a mean age of 69 years (SD 9.6), of whom 57.7% were female, underwent TSA during this time and 4,020 (22.7%) had at least one complication. A total of 8,113 patients (45.8%) had at least one comorbidity, and the median SDI in those who developed complications 12 months postoperatively was significantly greater than in those without a complication (33 vs 38; p < 0.001). Patients from areas with higher deprivation had increased one-, three-, and 12-month rates of readmission, dislocation, humeral fracture, urinary tract infection, deep vein thrombosis, and wound complications, as well as a higher three-month rate of pulmonary embolism (all p < 0.05). Conclusion. Beyond medical complications, we found that patients with increased social deprivation had higher rates of humeral fracture and dislocation following primary TSA. The large sample size of this study, and the outcomes that were measured, add to the literature greatly in comparison with other large database studies involving TSA. These findings allow orthopaedic surgeons practising in under-served or low-volume areas to identify patients who may be at greater risk of developing complications. Cite this article: Bone Joint J 2024;106-B(2):174–181


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 120 - 126
1 Jan 2022
Kafle G Garg B Mehta N Sharma R Singh U Kandasamy D Das P Chowdhury B

Aims. The aims of this study were to determine the diagnostic yield of image-guided biopsy in providing a final diagnosis in patients with suspected infectious spondylodiscitis, to report the diagnostic accuracy of various microbiological tests and histological examinations in these patients, and to report the epidemiology of infectious spondylodiscitis from a country where tuberculosis (TB) is endemic, including the incidence of drug-resistant TB. Methods. A total of 284 patients with clinically and radiologically suspected infectious spondylodiscitis were prospectively recruited into the study. Image-guided biopsy of the vertebral lesion was performed and specimens were sent for various microbiological tests and histological examinations. The final diagnosis was determined using a composite reference standard based on clinical, radiological, serological, microbiological, and histological findings. The overall diagnostic yield of the biopsy, and that for each test, was calculated in light of the final diagnosis. Results. The final diagnosis was tuberculous spondylodiscitis in 250 patients (88%) and pyogenic spondylodiscitis in 22 (7.8%). Six (2.1%) had a noninfectious condition-mimicking infectious spondylodiscitis, and six (2.1%) had no definite diagnosis and improved without specific treatment. The diagnosis was made by image-guided biopsy in 152 patients (56%) with infectious spondylodiscitis. Biopsy was contributory in identifying 132/250 patients (53%) with tuberculous spondylodiscitis, and 20/22 patients (91%) with pyogenic spondylodiscitis. Histological examination was the most sensitive diagnostic modality, followed by Xpert MTB/RIF assay. Conclusion. Image-guided biopsy has a reasonably high diagnostic yield in patients with suspected infectious spondylodiscitis. A combination of histological examination, Xpert MTB/RIF assay, bacterial culture, and sensitivity provides high diagnostic accuracy in a country in which TB is endemic. Cite this article: Bone Joint J 2022;104-B(1):120–126


Bone & Joint Research
Vol. 8, Issue 10 | Pages 489 - 494
1 Oct 2019
Klasan A Bäumlein M Dworschak P Bliemel C Neri T Schofer MD Heyse TJ

Objectives. Periprosthetic femoral fractures (PFFs) have a higher incidence with cementless stems. The highest incidence among various cementless stem types was observed with double-wedged stems. Short stems have been introduced as a bone-preserving alternative with a higher incidence of PFF in some studies. The purpose of this study was a direct load-to-failure comparison of a double-wedged cementless stem and a short cementless stem in a cadaveric fracture model. Methods. Eight hips from four human cadaveric specimens (age mean 76 years (60 to 89)) and eight fourth-generation composite femurs were used. None of the cadaveric specimens had compromised quality (mean T value 0.4 (-1.0 to 5.7)). Each specimen from a pair randomly received either a double-wedged stem or a short stem. A materials testing machine was used for lateral load-to-failure test of up to a maximal load of 5000 N. Results. Mean load at failure of the double-wedged stem was 2540 N (1845 to 2995) and 1867 N (1135 to 2345) for the short stem (p < 0.001). All specimens showed the same fracture pattern, consistent with a Vancouver B2 fracture. The double-wedged stem was able to sustain a higher load than its short-stemmed counterpart in all cases. Failure force was not correlated to the bone mineral density (p = 0.718). Conclusion. Short stems have a significantly lower primary load at failure compared with double-wedged stems in both cadaveric and composite specimens. Surgeons should consider this biomechanical property when deciding on the use of short femoral stem. Cite this article: A. Klasan, M. Bäumlein, P. Dworschak, C. Bliemel, T. Neri, M. D. Schofer, T. J. Heyse. Short stems have lower load at failure than double-wedged stems in a cadaveric cementless fracture model. Bone Joint Res 2019;8:489–494. DOI: 10.1302/2046-3758.810.BJR-2019-0051.R1


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. Conclusion. SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277–284


Bone & Joint Open
Vol. 2, Issue 7 | Pages 466 - 475
8 Jul 2021
Jain S Lamb J Townsend O Scott CEH Kendrick B Middleton R Jones SA Board T West R Pandit H

Aims. This study evaluates risk factors influencing fracture characteristics for postoperative periprosthetic femoral fractures (PFFs) around cemented stems in total hip arthroplasty. Methods. Data were collected for PFF patients admitted to eight UK centres between 25 May 2006 and 1 March 2020. Radiographs were assessed for Unified Classification System (UCS) grade and AO/OTA type. Statistical comparisons investigated relationships by age, gender, and stem fixation philosophy (polished taper-slip (PTS) vs composite beam (CB)). The effect of multiple variables was estimated using multinomial logistic regression to estimate odds ratios (ORs) with 95% confidence intervals (CIs). Surgical treatment (revision vs fixation) was compared by UCS grade and AO/OTA type. Results. A total of 584 cases were included. Median age was 79.1 years (interquartile range 72.0 to 86.0), 312 (53.6%) patients were female, and 495 (85.1%) stems were PTS. The commonest UCS grade was type B1 (278, 47.6%). The most common AO/OTA type was spiral (352, 60.3%). Metaphyseal split fractures occurred only with PTS stems with an incidence of 10.1%. Male sex was associated with a five-fold reduction in odds of a type C fracture (OR 0.22 (95% CI 0.12 to 0.41); p < 0.001) compared to a type B fracture. CB stems were associated with significantly increased odds of transverse fracture (OR 9.51 (95% CI 3.72 to 24.34); p < 0.001) and wedge fracture (OR 3.72 (95% CI 1.16 to 11.95); p = 0.027) compared to PTS stems. Both UCS grade and AO/OTA type differed significantly (p < 0.001 and p = 0.001, respectively) between the revision and fixation groups but a similar proportion of B1 fractures underwent revision compared to fixation (45.3% vs 50.6%). Conclusion. The commonest fracture types are B1 and spiral fractures. PTS stems are exclusively associated with metaphyseal split fractures, but their incidence is low. Males have lower odds of UCS grade C fractures compared to females. CB stems have higher odds of bending type fractures (transverse and wedge) compared to PTS stems. There is considerable variation in practice when treating B1 fractures around cemented stems. Cite this article: Bone Jt Open 2021;2(7):466–475


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 71 - 78
1 Jan 2021
Maggs JL Swanton E Whitehouse SL Howell JR Timperley AJ Hubble MJW Wilson MJ

Aims. Periprosthetic fractures (PPFs) around cemented taper-slip femoral prostheses often result in a femoral component that is loose at the prosthesis-cement interface, but where the cement-bone interface remains well-fixed and bone stock is good. We aim to understand how best to classify and manage these fractures by using a modification of the Vancouver classification. Methods. We reviewed 87 PPFs. Each was a first episode of fracture around a cemented femoral component, where surgical management consisted of revision surgery. Data regarding initial injury, intraoperative findings, and management were prospectively collected. Patient records and serial radiographs were reviewed to determine fracture classification, whether the bone cement was well fixed (B2W) or loose (B2L), and time to fracture union following treatment. Results. In total, 47 B2W fractures (54.0%) and one B3 fracture (1.1%) had cement that remained well-fixed at the cement-bone interface. These cases were treated with cement-in-cement (CinC) revision arthroplasty. Overall, 43 fractures with follow-up united, and two patients sustained further fractures secondary to nonunion and required further revision surgery. A total of 19 B2L fractures (21.8%) and 19 B3 fractures (21.8%) had cement that was loose at the cement-bone interface. These cases were managed by revision arthroplasty with either cemented or uncemented femoral components, or proximal femoral arthroplasty. One case could not be classified. Conclusion. We endorse a modification of the original Vancouver system to include a subclassification of B2 fractures around cemented femoral prostheses to include B2W (where cement is well-fixed to bone) and B2L (where the cement is loose). Fractures around taper-slip design stems are more likely to fracture in a B2W pattern compared to fractures around composite beam design stems which are more likely to fracture in a B2L pattern. B2W fractures can reliably be managed with CinC revision. Cite this article: Bone Joint J 2021;103-B(1):71–78


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 294 - 298
1 Feb 2021
Hadeed MM Prakash H Yarboro SR Weiss DB

Aims. The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. Methods. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals. Results. The spiral and oblique fracture patterns withstood simulated weight-bearing with minimal displacement. The multifragmented model had early implant failure with breaking of the distal locking screws. The spiral fracture model shortened by a mean of 0.3 mm (SD 0.2), and developed a mean coronal angulation of 2.0° (SD 1.9°) and a mean sagittal angulation of 1.2° (SD 1.1°). On average, 88% of the shortening, 74% of the change in coronal alignment, and 75% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. The oblique fracture model shortened by a mean of 0.2 mm (SD 0.1) and developed a mean coronal angulation of 2.4° (SD 1.6°) and a mean sagittal angulation of 2.6° (SD 1.4°). On average, 44% of the shortening, 39% of the change in coronal alignment, and 79% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. Conclusion. For spiral and oblique fracture patterns, simulated weight-bearing resulted in a clinically acceptable degree of displacement. Most displacement occurred early in the test period, and the rate of displacement decreased over time. Based on this model, we offer evidence that early weight-bearing appears safe for well reduced oblique and spiral fractures, but not in multifragmented patterns that have poor bone contact. Cite this article: Bone Joint J 2021;103-B(2):294–298


Bone & Joint Open
Vol. 2, Issue 1 | Pages 3 - 8
1 Jan 2021
Costa-Paz M Muscolo DL Ayerza MA Sanchez M Astoul Bonorino J Yacuzzi C Carbo L

Aims. Our purpose was to describe an unusual series of 21 patients with fungal osteomyelitis after an anterior cruciate ligament reconstruction (ACL-R). Methods. We present a case-series of consecutive patients treated at our institution due to a severe fungal osteomyelitis after an arthroscopic ACL-R from November 2005 to March 2015. Patients were referred to our institution from different areas of our country. We evaluated the amount of bone resection required, type of final reconstructive procedure performed, and Musculoskeletal Tumor Society (MSTS) functional score. Results. A total of 21 consecutive patients were included in the study; 19 were male with median age of 28 years (IQR 25 to 32). All ACL-R were performed with hamstrings autografts with different fixation techniques. An oncological-type debridement was needed to control persistent infection symptoms. There were no recurrences of fungal infection after median of four surgical debridements (IQR 3 to 6). Five patients underwent an extensive curettage due to the presence of large cavitary lesions and were reconstructed with hemicylindrical intercalary allografts (HIAs), preserving the epiphysis. An open surgical debridement was performed resecting the affected epiphysis in 15 patients, with a median bone loss of 11 cm (IQR 11.5 to 15.6). From these 15 cases, eight patients were reconstructed with allograft prosthesis composites (APC); six with tumour-type prosthesis (TTP) and one required a femoral TTP in combination with a tibial APC. One underwent an above-the-knee amputation. The median MSTS functional score was 20 points at a median of seven years (IQR 5 to 9) of follow-up. Conclusion. This study suggests that mucormycosis infection after an ACL-R is a serious complication. Diagnosis is usually delayed until major bone destructive lesions are present. This may originate additional massive reconstructive surgeries with severe functional limitations for the patients. Level of evidence: IV. Cite this article: Bone Joint Open 2020;2(1):3–8


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1094 - 1099
1 Aug 2018
Gupta S Malhotra A Mittal N Garg SK Jindal R Kansay R

Aims. The aims of this study were to establish whether composite fixation (rail-plate) decreases fixator time and related problems in the management of patients with infected nonunion of tibia with a segmental defect, without compromising the anatomical and functional outcomes achieved using the classical Ilizarov technique. We also wished to study the acceptability of this technique using patient-based objective criteria. Patients and Methods. Between January 2012 and January 2015, 14 consecutive patients were treated for an infected nonunion of the tibia with a gap and were included in the study. During stage one, a radical debridement of bone and soft tissue was undertaken with the introduction of an antibiotic-loaded cement spacer. At the second stage, the tibia was stabilized using a long lateral locked plate and a six-pin monorail fixator on its anteromedial surface. A corticotomy was performed at the appropriate level. During the third stage, i.e. at the end of the distraction phase, the transported fragment was aligned and fixed to the plate with two to four screws. An iliac crest autograft was added to the docking site and the fixator was removed. Functional outcome was assessed using the Association for the Study and Application of Methods of Ilizarov (ASAMI) criteria. Patient-reported outcomes were assessed using the Musculoskeletal Tumor Society (MSTS) score. Results. The mean age of patients was 38.1 years (. sd. 12.7). There were 13 men and one woman. The mean size of the defect was 6.4 cm (. sd. 1.3). the mean follow-up was 33.2 months (24 to 50). The mean external fixator index was 21.2 days/cm (. sd. 1.5). The complication rate was 0.5 (7/14) per patient. According to the classification of Paley, there were five problems and two obstacles but no true complications. The ASAMI bone score was excellent in all patients. The functional ASAMI scores were excellent in eight and good in six patients. The mean MSTS composite score was 83.9% (. sd. 7.1), with an MSTS emotional acceptance score of 4.9 (. sd. 0.5; maximum possible 5). Conclusion. Composite fixation (rail-plate) decreases fixator time and the associated complications, in the treatment of patients of infected nonunion tibia with a segmental defect. It also provides good anatomical and functional results with high emotional acceptance. Cite this article: Bone Joint J 2018;100-B:1094–9


Bone & Joint Open
Vol. 1, Issue 10 | Pages 644 - 653
14 Oct 2020
Kjærvik C Stensland E Byhring HS Gjertsen J Dybvik E Søreide O

Aims. The aim of this study was to describe variation in hip fracture treatment in Norway expressed as adherence to international and national evidence-based treatment guidelines, to study factors influencing deviation from guidelines, and to analyze consequences of non-adherence. Methods. International and national guidelines were identified and treatment recommendations extracted. All 43 hospitals routinely treating hip fractures in Norway were characterized. From the Norwegian Hip Fracture Register (NHFR), hip fracture patients aged > 65 years and operated in the period January 2014 to December 2018 for fractures with conclusive treatment guidelines were included (n = 29,613: femoral neck fractures (n = 21,325), stable trochanteric fractures (n = 5,546), inter- and subtrochanteric fractures (n = 2,742)). Adherence to treatment recommendations and a composite indicator of best practice were analyzed. Patient survival and reoperations were evaluated for each recommendation. Results. Median age of the patients was 84 (IQR 77 to 89) years and 69% (20,427/29,613) were women. Overall, 79% (23,390/29,613) were treated within 48 hours, and 80% (23,635/29,613) by a surgeon with more than three years’ experience. Adherence to guidelines varied substantially but was markedly better in 2018 than in 2014. Having a dedicated hip fracture unit (OR 1.06, 95%CI 1.01 to 1.11) and a hospital hip fracture programme (OR 1.16, 95% CI 1.06 to 1.27) increased the probability of treatment according to best practice. Surgery after 48 hours increased one-year mortality significantly (OR 1.13, 95% CI 1.05 to 1.22; p = 0.001). Alternative treatment to arthroplasty for displaced femoral neck fractures (FNFs) increased mortality after 30 days (OR 1.29, 95% CI 1.03 to 1.62)) and one year (OR 1.45, 95% CI 1.22 to 1.72), and also increased the number of reoperations (OR 4.61, 95% CI 3.73 to 5.71). An uncemented stem increased the risk of reoperation significantly (OR 1.23, 95% CI 1.02 to 1.48; p = 0.030). Conclusion. Our study demonstrates a substantial variation between hospitals in adherence to evidence-based guidelines for treatment of hip fractures in Norway. Non-adherence can be ascribed to in-hospital factors. Poor adherence has significant negative consequences for patients in the form of increased mortality rates at 30 and 365 days post-treatment and in reoperation rates. Cite this article: Bone Joint Open 2020;1-10:644–653


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 762 - 767
1 Jun 2012
Sternheim A Rogers BA Kuzyk PR Safir OA Backstein D Gross AE

The treatment of substantial proximal femoral bone loss in young patients with developmental dysplasia of the hip (DDH) is challenging. We retrospectively analysed the outcome of 28 patients (30 hips) with DDH who underwent revision total hip replacement (THR) in the presence of a deficient proximal femur, which was reconstructed with an allograft prosthetic composite. The mean follow-up was 15 years (8.5 to 25.5). The mean number of previous THRs was three (1 to 8). The mean age at primary THR and at the index reconstruction was 41 years (18 to 61) and 58.1 years (32 to 72), respectively. The indication for revision included mechanical loosening in 24 hips, infection in three and peri-prosthetic fracture in three. Six patients required removal and replacement of the allograft prosthetic composite, five for mechanical loosening and one for infection. The survivorship at ten, 15 and 20 years was 93% (95% confidence interval (CI) 91 to 100), 75.5% (95% CI 60 to 95) and 75.5% (95% CI 60 to 95), respectively, with 25, eight, and four patients at risk, respectively. Additionally, two junctional nonunions between the allograft and host femur required bone grafting and plating. An allograft prosthetic composite affords a good long-term outcome in the management of proximal femoral bone loss in revision THR in patients with DDH, while preserving distal host bone


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1522 - 1527
1 Nov 2008
Davis ET Olsen M Zdero R Waddell JP Schemitsch EH

A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens. The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study


Bone & Joint Research
Vol. 7, Issue 7 | Pages 485 - 493
1 Jul 2018
Numata Y Kaneuji A Kerboull L Takahashi E Ichiseki T Fukui K Tsujioka J Kawahara N

Objective. Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study. Methods. Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CT. Results. The cement thickness of 95 % of the proximal and middle region was less than 2.5 mm. A small amount of stem subsidence was observed even with collar contact. The greatest compressive force was observed at the proximal medial region and significant positive correlation was observed between stem subsidence and compressive force. 9 of 11 balls in the medial region moved to the horizontal direction more than that of the perpendicular direction. The amount of ball movement distance in the perpendicular direction was 59 to 83% of the stem subsidence, which was thought to be slip in the cement of the stem. No cement defect and no cement breakage were seen. Conclusion. Thin cement in CMK stems produced effective hoop stress without excessive stem and cement subsidence. Polished CMK stem may work like force-closed fixation in short-term experiment. Cite this article: Y. Numata, A. Kaneuji, L. Kerboull, E. Takahashi, T. Ichiseki, K. Fukui, J. Tsujioka, N. Kawahara. Biomechanical behaviour of a French femoral component with thin cement mantle: The ‘French paradox’ may not be a paradox after all. Bone Joint Res 2018;7:485–493. DOI: 10.1302/2046-3758.77.BJR-2017-0288.R2


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 215 - 220
1 Feb 2015
Soons J Rakhorst HA Ruettermann M Luijsterburg AJM Bos PK Zöphel OT

A total of seven patients (six men and one woman) with a defect in the Achilles tendon and overlying soft tissue underwent reconstruction using either a composite radial forearm flap (n = 3) or an anterolateral thigh flap (n = 4). The Achilles tendons were reconstructed using chimeric palmaris longus (n = 2) or tensor fascia lata (n = 2) flaps or transfer of the flexor hallucis longus tendon (n = 3). Surgical parameters such as the rate of complications and the time between the initial repair and flap surgery were analysed. Function was measured objectively by recording the circumference of the calf, the isometric strength of the plantar flexors and the range of movement of the ankle. The Achilles tendon Total Rupture Score (ATRS) questionnaire was used as a patient-reported outcome measure. Most patients had undergone several previous operations to the Achilles tendon prior to flap surgery. The mean time to flap surgery was 14.3 months (2.1 to 40.7). At a mean follow-up of 32.3 months (12.1 to 59.6) the circumference of the calf on the operated lower limb was reduced by a mean of 1.9 cm (. sd. 0.74) compared with the contralateral limb (p = 0.042). The mean strength of the plantar flexors on the operated lower limb was reduced to 88.9% of that of the contralateral limb (p = 0.043). There was no significant difference in the range of movement between the two sides (p = 0.317). The mean ATRS score was 72 points (. sd. 20.0). One patient who had an initial successful reconstruction developed a skin defect of the composite flap 12 months after free flap surgery and this resulted in recurrent infections, culminating in transtibial amputation 44 months after reconstruction. . These otherwise indicate that reconstruction of the Achilles tendon combined with flap cover results in a successful and functional reconstruction. Cite this article: Bone Joint J 2015;97-B:215–20


Bone & Joint Research
Vol. 8, Issue 2 | Pages 55 - 64
1 Feb 2019
Danese I Pankaj P Scott CEH

Objectives. Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM). Methods. A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest. Results. Varus malalignment decreased VOCB but increased MSCB in both implants, more so in the AP implant. Varus malalignment of 10° reduced the VOCB by 10% and 3% in AP and MB implants but increased the MSCB by 14% and 13%, respectively. Valgus malalignment of 5° increased the VOCB by 8% and 4% in AP and MB implants, with reductions in MSCB of 7% and 10%, respectively. Sagittal malalignment displayed negligible effects. Well-aligned AP implants displayed greater VOCB than malaligned MB implants. Conclusion. All-polyethylene implants are more sensitive to coronal plane malalignments than MB implants are; varus malalignment reduced cancellous bone strain but increased anteromedial cortical bone stress. Sagittal plane malalignment has a negligible effect on bone strain. Cite this article: I. Danese, P. Pankaj, C. E. H. Scott. The effect of malalignment on proximal tibial strain in fixed-bearing unicompartmental knee arthroplasty: A comparison between metal-backed and all-polyethylene components using a validated finite element model. Bone Joint Res 2019;8:55–64. DOI: 10.1302/2046-3758.82.BJR-2018-0186.R2


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure. Materials and Methods. A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix). Results. For both plate types, long spans increased IFM but did not substantially alter peak plate stress. The custom plate increased axial and shear IFM values by up to 24% and 47%, respectively, compared with the TomoFix. In all cases, a callus stiffness of 528 MPa was required to reduce plate stress below the fatigue strength of titanium alloy. Conclusion. We demonstrate that larger bridging spans in opening wedge HTO increase IFM without substantially increasing plate stress. The results indicate, however, that callus healing is required to prevent fatigue failure. Cite this article: A. R. MacLeod, G. Serrancoli, B. J. Fregly, A. D. Toms, H. S. Gill. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res 2018;7:639–649. DOI: 10.1302/2046-3758.712.BJR-2018-0035.R1


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 14 - 17
1 Jan 2016
Sentuerk U von Roth P Perka C

The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):14–17


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 120 - 125
1 Jan 2011
Lim H Bae J Song H Teoh SH Kim H Kum D

Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination. Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy


Bone & Joint Open
Vol. 4, Issue 9 | Pages 659 - 667
1 Sep 2023
Nasser AAHH Osman K Chauhan GS Prakash R Handford C Nandra RS Mahmood A

Aims

Periprosthetic fractures (PPFs) following hip arthroplasty are complex injuries. This study evaluates patient demographic characteristics, management, outcomes, and risk factors associated with PPF subtypes over a decade.

Methods

Using a multicentre collaborative study design, independent of registry data, we identified adults from 29 centres with PPFs around the hip between January 2010 and December 2019. Radiographs were assessed for the Unified Classification System (UCS) grade. Patient and injury characteristics, management, and outcomes were compared between UCS grades. A multinomial logistic regression was performed to estimate relative risk ratios (RRR) of variables on UCS grade.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives. In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. Methods. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN). Results. Screw fixation alone resulted in up to three times more movement (p = 0.006), especially when load was increased to 100% (p < 0.001), than with the other two fixation methods (C and SC). No significant difference was noted when a screw was added to the cement fixation. Increased load resulted in increased relative movement between the interfaces in all fixation methods (p < 0.001). Conclusion. Cement fixation between a porous titanium acetabular component and augment is associated with less relative movement than screw fixation alone for all implant interfaces, particularly with increasing loads. Adding a screw to the cement fixation did not offer any significant advantage. These results also show that the stability of the tested acetabular component/augment interface affects the stability of the construct that is affixed to the bone. Cite this article: N. A. Beckmann, R. G. Bitsch, M. Gondan, M. Schonhoff, S. Jaeger. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res 2018;7:282–288. DOI: 10.1302/2046-3758.74.BJR-2017-0198.R1


Bone & Joint Open
Vol. 5, Issue 2 | Pages 87 - 93
2 Feb 2024
Wolf O Ghukasyan Lakic T Ljungdahl J Sundkvist J Möller M Rogmark C Mukka S Hailer NP

Aims

Our primary aim was to assess reoperation-free survival at one year after the index injury in patients aged ≥ 75 years treated with internal fixation (IF) or arthroplasty for undisplaced femoral neck fractures (uFNFs). Secondary outcomes were reoperations and mortality analyzed separately.

Methods

We retrieved data on all patients aged ≥ 75 years with an uFNF registered in the Swedish Fracture Register from 2011 to 2018. The database was linked to the Swedish Arthroplasty Register and the National Patient Register to obtain information on comorbidity, mortality, and reoperations. Our primary outcome, reoperation, or death at one year was analyzed using restricted mean survival time, which gives the mean time to either event for each group separately.


Objectives. Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs. Methods. Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests. Results. The method of loading was found to affect the gap stiffness strongly (by up to six times) but also the magnitude of the plate stress and the location and magnitude of strains at the bone-screw interface. Conclusions. This study demonstrates that the method of loading is responsible for much of the difference in reported stiffness values in the literature. It also shows that previous contradictory findings, such as the influence of working length and very large differences in failure loads, can be readily explained by the choice of loading condition. Cite this article: A. MacLeod, A. H. R. W. Simpson, P. Pankaj. Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. Bone Joint Res 2018;7:111–120. DOI: 10.1302/2046-3758.71.BJR-2017-0074.R2


Bone & Joint Research
Vol. 6, Issue 5 | Pages 351 - 357
1 May 2017
Takahashi E Kaneuji A Tsuda R Numata Y Ichiseki T Fukui K Kawahara N

Objectives. Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep. Methods. We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem. Results. A strong positive correlation was observed between mean cement thickness and stem subsidence in the CT slices on the balls. In the small stems, the balls moved downward to almost the same extent as the stem. There was a significant negative correlation between cement thickness and the horizontal:downward ratio of ball movement. Conclusion. Collarless polished tapered stems with thicker cement mantles resulted in greater subsidence of both stem and cement. This suggests that excessive thickness of the cement mantle may interfere with effective radial cement creep. Cite this article: E. Takahashi, A. Kaneuji, R. Tsuda, Y. Numata, T. Ichiseki, K. Fukui, N. Kawahara. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental? Bone Joint Res 2017;6:–357. DOI: 10.1302/2046-3758.65.BJR-2017-0028.R1


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1681 - 1688
1 Dec 2017
Jones CW Shatrov J Jagiello JM Millington S Hong A Boyle R Stalley PD

Aims. We present a retrospective review of patients treated with extracorporeally irradiated allografts for primary and secondary bone tumours with the mid- and long-term survivorship and the functional and radiographic outcomes. Patients and Methods. A total of 113 of 116 (97.4%) patients who were treated with extracorporeally irradiated allografts between 1996 and 2014 were followed up. Forms of treatment included reconstructions, prostheses and composite reconstructions, both with and without vascularised grafts. Survivorship was determined by the Kaplan-Meier method. Clinical outcomes were assessed using the Musculoskeletal Tumor Society (MSTS) scoring system, the Toronto Extremity Salvage Score (TESS) and Quality of Life-C30 (QLQ-30) measures. Radiographic outcomes were assessed using the International Society of Limb Salvage (ISOLS) radiographic scoring system. Results. There were 61 (54%) men with a mean age of 22 years (6 to 70) and 52 (46%) women with a mean age of 26 years (3 to 85). There were 23 deaths. The five-year patient survivorship was 82.3% and the ten-year patient survivorship was 79.6%. The mean follow-up of the 90 surviving patients was 80.3 months (2 to 207). At the last follow-up, 105 allografts (92.9%) were still in place or had been at the time of death; eight (7%) had failed due to infection, local recurrence or fracture. Outcome scores were comparable with or superior to those in previous studies. The mean outcome scores were: MSTS 79% (. sd. 8); TESS 83% (. sd. 19); QLQ 82% (. sd. 16); ISOLS 80.5% (. sd. 19). . Pearson correlation analysis showed a strong relationship between the MSTS and ISOLS scores (r = 0.71, p < 0.001). Conclusion. This study shows that extracorporeal irradiation is a versatile reconstructive technique for dealing with large defects after the resection of bone tumours with good functional and radiographic outcomes. Functional outcomes as measured by MSTS, TESS and QLQ-30 were strongly correlated to radiographic outcomes. Cite this article: Bone Joint J 2017;99-B:1681–8


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 121 - 126
1 Jan 2007
Jensen TB Overgaard S Lind M Rahbek O Bünger C Søballe K

Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own. ProOsteon alone cannot be recommended as a substitute for allograft around non-cemented implants, but should be used to extend the volume of the graft, preferably with the addition of a growth factor


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.