Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 617 - 623
1 May 2010
McNamara I Deshpande S Porteous M

The clinical and radiological results of 50 consecutive acetabular reconstructions in 48 patients using impaction grafting have been retrospectively reviewed. A 1:1 mixture of frozen, ground irradiated bone graft and Apapore 60, a synthetic bone graft substitute, was used in all cases. There were 13 complex primary and 37 revision procedures with a mean follow-up of five years (3.4 to 7.6). The clinical survival rate was 100%, with improvements in the mean Harris Hip Scores for pain and function. Radiologically, 30 acetabular grafts showed evidence of incorporation, ten had radiolucent lines and two acetabular components migrated initially before stabilising.

Acetabular reconstruction in both primary and revision surgery using a 1:1 mixture of frozen, ground, irriadiated bone and Apapore 60 appears to be a reliable method of managing acetabular defects. Longer follow-up will be required to establish whether this technique is as effective as using fresh-frozen allograft.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 386 - 393
1 Jul 2020
Doyle R van Arkel RJ Muirhead-Allwood S Jeffers JRT

Aims

Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component?

Methods

A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 98 - 102
1 Nov 2013
Ibrahim MS Raja S Haddad FS

The increasing need for total hip replacement (THR) in an ageing population will inevitably generate a larger number of revision procedures. The difficulties encountered in dealing with the bone deficient acetabulum are amongst the greatest challenges in hip surgery. The failed acetabular component requires reconstruction to restore the hip centre and improve joint biomechanics. Impaction bone grafting is successful in achieving acetabular reconstruction using both cemented and cementless techniques. Bone graft incorporation restores bone stock whilst providing good component stability. We provide a summary of the evidence and current literature regarding impaction bone grafting using both cemented and cementless techniques in revision THR.

Cite this article: Bone Joint J 2013;95-B, Supple A:98–102.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1049 - 1053
1 Aug 2011
Putzer D Mayr E Haid C Reinthaler A Nogler M

In revision total hip replacement, bone loss can be managed by impacting porous bone chips. In order to guarantee sufficient mechanical strength, the bone chips have to be compacted. The aim of this study was to determine in an in vitro simulation whether the use of a pneumatic hammer leads to higher primary stability than manual impaction. Bone mass characteristics were measured by force and distance variation of a penetrating punch, which was lowered into a plastic cup filled with bone chips. From these measurements bulk density, contact stiffness, impaction hardness and penetration resistance were calculated for different durations of impaction.

We found that the pneumatic method reached higher values of impaction hardness, contact stiffness and bulk density suggesting an increase in stability of the implant. No significant differences were found between the two different methods concerning the penetration resistance. The pneumatic method might reduce the risk of fracture in vivo, as force peaks are smaller and applied for a shorter period. Results from manual impaction showed higher variability and depend much on the experience of the surgeon. The pneumatic hammer is a suitable tool to standardise the impaction process.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 616 - 621
1 May 2011
O’Neill F Condon F McGloughlin T Lenehan B Coffey JC Walsh M

We biomechanically investigated whether the standard dynamic hip screw (DHS) or the DHS blade achieves better fixation in bone with regard to resistance to pushout, pullout and torsional stability. The experiments were undertaken in an artificial bone substrate in the form of polyurethane foam blocks with predefined mechanical properties. Pushout tests were also repeated in cadaveric femoral heads. The results showed that the DHS blade outperformed the DHS with regard to the two most important characteristics of implant fixation, namely resistance to pushout and rotational stability.

We concluded that the DHS blade was the superior implant in this study.