Advertisement for orthosearch.org.uk
Results 1 - 20 of 147
Results per page:
Bone & Joint Research
Vol. 9, Issue 10 | Pages 731 - 741
28 Oct 2020
He Z Nie P Lu J Ling Y Guo J Zhang B Hu J Liao J Gu J Dai B Feng Z

Aims. Osteoarthritis (OA) is a disabling joint disorder and mechanical loading is an important pathogenesis. This study aims to investigate the benefits of less mechanical loading created by intermittent tail suspension for knee OA. Methods. A post-traumatic OA model was established in 20 rats (12 weeks old, male). Ten rats were treated with less mechanical loading through intermittent tail suspension, while another ten rats were treated with normal mechanical loading. Cartilage damage was determined by gross appearance, Safranin O/Fast Green staining, and immunohistochemistry examinations. Subchondral bone changes were analyzed by micro-CT and tartrate-resistant acid phosphatase (TRAP) staining, and serum inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). Results. Our radiographs showed that joint space was significantly enlarged in rats with less mechanical loading. Moreover, cartilage destruction was attenuated in the less mechanical loading group with lower histological damage scores, and lower expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5, matrix metalloproteinase (MMP)-3, and MMP-13. In addition, subchondral bone abnormal changes were ameliorated in OA rats with less mechanical loading, as reduced bone mineral density (BMD), bone volume/tissue volume (BV/TV), and number of osteophytes and osteoclasts in the subchondral bone were observed. Finally, the level of serum inflammatory cytokines was significantly downregulated in the less mechanical loading group compared with the normal mechanical loading group, as well as the expression of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), caspase-1, and interleukin 1β (IL-1β) in the cartilage. Conclusion. Less mechanical loading alleviates cartilage destruction, subchondral bone changes, and secondary inflammation in OA joints. This study provides fundamental insights into the benefit of non-weight loading rest for patients with OA. Cite this article: Bone Joint Res 2020;9(10):731–741


Bone & Joint Research
Vol. 10, Issue 7 | Pages 437 - 444
27 Jul 2021
Yan F Feng J Yang L Shi C

Aims. The aim of our study is to investigate the effect induced by alternated mechanical loading on Notch-1 in mandibular condylar cartilage (MCC) of growing rabbits. Methods. A total of 64 ten-day-old rabbits were randomly divided into two groups according to dietary hardness: normal diet group (pellet) and soft diet group (powder). In each group, the rabbits were further divided into four subgroups by feeding time: two weeks, four weeks, six weeks, and eight weeks. Animals would be injected 5-bromo-2′-deoxyuridine (BrdU) every day for one week before sacrificing. Histomorphometric analysis of MCC thickness was performed through haematoxylin and eosin (HE) staining. Immunochemical analysis was done to test BrdU and Notch-1. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure expression of Notch-1, Jagged-1, and Delta-like 1 (Dll-1). Results. The thickness of MCC in the soft diet group was thinner than the one in normal diet group. Notch-1 was restricted in fibrous layer, proliferative layer, and hypertrophic layer. The expression of Notch-1 increased from two weeks to six weeks and then fell down. Notch-1 in normal diet group was higher than that in soft diet group in anterior part of MCC. The statistical differences of Notch-1 were shown at two, four, and six weeks (p < 0.05). The result of western blot and quantitative real-time PCR (qRT-PCR) showed the expression of Dll-1 and Jagged-1 rose from two to four weeks and started to decrease at four weeks. BrdU distributed in all layers of cartilage and subchondral bone. The number of BrdU-positive cells, which were less in soft diet group, was decreasing along with the experiment period. The significant difference was found at four, six, and eight weeks in anterior and posterior parts (p < 0.05). Conclusion. The structure and proliferation of MCC in rabbits were sensitive to dietary loading changes. The proper mechanical loading was essential for transduction of Notch signalling pathway and development of mandibular condylar cartilage. Cite this article: Bone Joint Res 2021;10(7):437–444


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 568 - 573
1 Apr 2013
Pichler K Herbert V Schmidt B Fischerauer EE Leithner A Weinberg A

Matrix metalloproteinases (MMPs), responsible for extracellular matrix remodelling and angiogenesis, might play a major role in the response of the growth plate to detrimental loads that lead to overuse injuries in young athletes. In order to test this hypothesis, human growth plate chondrocytes were subjected to mechanical forces equal to either physiological loads, near detrimental or detrimental loads for two hours. In addition, these cells were exposed to physiological loads for up to 24 hours. Changes in the expression of MMPs -2, -3 and -13 were investigated.

We found that expression of MMPs in cultured human growth plate chondrocytes increases in a linear manner with increased duration and intensity of loading. We also showed for the first time that physiological loads have the same effect on growth plate chondrocytes over a long period of time as detrimental loads applied for a short period.

These findings confirm the involvement of MMPs in overuse injuries in children. We suggest that training programmes for immature athletes should be reconsidered in order to avoid detrimental stresses and over-expression of MMPs in the growth plate, and especially to avoid physiological loads becoming detrimental.

Cite this article: Bone Joint J 2013;95-B:568–73.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims. Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Methods. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites. Results. We initially identified 4,402 clinical trials, 27 of which were eligible for inclusion and analysis, including nine shoulder surgery trials, eight knee surgery trials, two ankle surgery trials, two hand surgery trials, and six peripheral nerve graft trials. Nine of the trials were completed. We identified only one product that will be commercially available for use in knee surgery with significant mechanical load resistance. Peracetic acid and gamma irradiation were frequently used for sterilization. Conclusion. Despite the demand for decellularized tissue, few decellularized tissue products are currently commercially available, particularly for the knee joint. To be viable in orthopaedic surgery, decellularized tissue must exhibit biocompatibility and mechanical strength, and these requirements are challenging for the clinical application of decellularized tissue. However, the variety of available decellularized products has recently increased. Therefore, decellularized grafts may become a promising option in orthopaedic surgery. Cite this article: Bone Joint Res 2023;12(3):179–188


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. Methods. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee. Results. Titanium lattice implants were able to restore the mechanical environment of the native tibia for both UKA and TKA designs. Maximum stress at the bone-implant interface ranged from 1.2 MPa to 3.3 MPa compared with 1.3 MPa to 2.7 MPa for the native tibia. The conventional solid UKA and TKA implants reduced the maximum stress in the bone by a factor of 10 and caused > 70% of bone surface area to be underloaded compared to the native tibia. Conclusion. Titanium lattice implants maintained the natural mechanical loading in the proximal tibia after UKA and TKA, but conventional solid implants did not. This is an exciting first step towards implants that maintain bone health, but such implants also have to meet fatigue and micromotion criteria to be clinically viable. Cite this article: Bone Joint Res 2022;11(2):91–101


Bone & Joint Research
Vol. 8, Issue 1 | Pages 19 - 31
1 Jan 2019
Li M Zhang C Yang Y

Objectives. Many in vitro studies have investigated the mechanism by which mechanical signals are transduced into biological signals that regulate bone homeostasis via periodontal ligament fibroblasts during orthodontic treatment, but the results have not been systematically reviewed. This review aims to do this, considering the parameters of various in vitro mechanical loading approaches and their effects on osteogenic and osteoclastogenic properties of periodontal ligament fibroblasts. Methods. Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017. Results. A total of 26 studies from the 555 articles obtained via the database search were ultimately included, and four main types of biomechanical approach were identified. Compressive force is characterized by static and continuous application, whereas tensile force is mainly cyclic. Only nine studies investigated the mechanisms by which periodontal ligament fibroblasts transduce mechanical stimulus. The studies provided evidence from in vitro mechanical loading regimens that periodontal ligament fibroblasts play a unique and dominant role in the regulation of bone remodelling during orthodontic tooth movement. Conclusion. Evidence from the reviewed studies described the characteristics of periodontal ligament fibroblasts exposed to mechanical force. This is expected to benefit subsequent research into periodontal ligament fibroblasts and to provide indirectly evidence-based insights regarding orthodontic treatment. Further studies should be performed to explore the effects of static tension on cytomechanical properties, better techniques for static compressive force loading, and deeper analysis of underlying regulatory systems. Cite this article: M. Li, C. Zhang, Y. Yang. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: A systematic review of in vitro studies. Bone Joint Res 2019;8:19–31. DOI: 10.1302/2046-3758.81.BJR-2018-0060.R1


Bone & Joint Research
Vol. 10, Issue 2 | Pages 137 - 148
1 Feb 2021
Lawrence EA Aggleton J van Loon J Godivier J Harniman R Pei J Nowlan N Hammond C

Aims. Vertebrates have adapted to life on Earth and its constant gravitational field, which exerts load on the body and influences the structure and function of tissues. While the effects of microgravity on muscle and bone homeostasis are well described, with sarcopenia and osteoporosis observed in astronauts returning from space, the effects of shorter exposures to increased gravitational fields are less well characterized. We aimed to test how hypergravity affects early cartilage and skeletal development in a zebrafish model. Methods. We exposed zebrafish to 3 g and 6 g hypergravity from three to five days post-fertilization, when key events in jaw cartilage morphogenesis occur. Following this exposure, we performed immunostaining along with a range of histological stains and transmission electron microscopy (TEM) to examine cartilage morphology and structure, atomic force microscopy (AFM) and nanoindentation experiments to investigate the cartilage material properties, and finite element modelling to map the pattern of strain and stress in the skeletal rudiments. Results. We did not observe changes to larval growth, or morphology of cartilage or muscle. However, we observed altered mechanical properties of jaw cartilages, and in these regions we saw changes to chondrocyte morphology and extracellular matrix (ECM) composition. These areas also correspond to places where strain and stress distribution are predicted to be most different following hypergravity exposure. Conclusion. Our results suggest that altered mechanical loading, through hypergravity exposure, affects chondrocyte maturation and ECM components, ultimately leading to changes to cartilage structure and function. Cite this article: Bone Joint Res 2021;10(2):137–148


Bone & Joint 360
Vol. 3, Issue 2 | Pages 32 - 65
1 Apr 2014
Adams MA

This short contribution aims to explain how intervertebral disc ‘degeneration’ differs from normal ageing, and to suggest how mechanical loading and constitutional factors interact to cause disc degeneration and prolapse. We suggest that disagreement on these matters in medico-legal practice often arises from a misunderstanding of the nature of ‘soft-tissue injuries’


Bone & Joint Research
Vol. 5, Issue 10 | Pages 492 - 499
1 Oct 2016
Li X Li M Lu J Hu Y Cui L Zhang D Yang Y

Objectives. To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention. Materials and Methods. The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the t-test, and significance was set at p < 0.05. Results. There was no significant difference between the amount of tooth movement in the young group (0.96, standard deviation (. sd. ) 0.30mm) and that in the adult group (0.80mm, . sd. 0.28) (p > 0.05) after the seven-day force application. On the compression side, the expression of RANKL and TRAP-positive osteoclasts in both the young and the adult groups increased after the application of force for seven days, and then decreased at the end of the seven-day retention period. However, by the end of the period, the expression of RANKL on the compression side dropped to the control level in the young group (p > 0.05), while it was still higher than that on the control side in the adult group (p < 0.05). The expression of RANKL on the compression side did not show significant difference between the young and the adult groups after seven-day force application (p > 0.05), but it was significantly higher in the adult group than that in the young group after seven-day post-orthodontic retention (p < 0.05). Similarly, the decreasing trend of TRAP-positive osteoclasts during the retention period in the adult group was less obvious than that in the young group. Conclusions. The bone-resorptive activity in the young rats was more dynamic than that in the adult rats. The expression of RANKL and the number of osteoclasts in adult rats did not drop to the control level during the post-orthodontic retention period while RANKL expression and the number of osteoclasts in young rats had returned to the baseline. Cite this article: X. Li, M. Li, J. Lu, Y. Hu, L. Cui, D. Zhang, Y. Yang. Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone Joint Res 2016;5:492–499. DOI: 10.1302/2046-3758.510.BJR-2016-0004.R2


The early failure and revision of bimodular primary total hip arthroplasty prostheses requires the identification of the risk factors for material loss and wear at the taper junctions through taper wear analysis. Deviations in taper geometries between revised and pristine modular neck tapers were determined using high resolution tactile measurements. A new algorithm was developed and validated to allow the quantitative analysis of material loss, complementing the standard visual inspection currently used. The algorithm was applied to a sample of 27 retrievals (in situ from 2.9 to 38.1 months) of the withdrawn Rejuvenate modular prosthesis. The mean wear volumes on the flat distal neck piece taper was 3.35 mm. 3. (0.55 to 7.57), mainly occurring in a characteristic pattern in areas with high mechanical loading. Wear volume tended to increase with time to revision (r² = 0.423, p = 0.001). Implant and patient specific data (offset, stem size, patient’s mass, age and body mass index) did not correlate with the amount of material loss observed (p >  0.078). Bilaterally revised implants showed higher amounts of combined total material loss and similar wear patterns on both sides. The consistent wear pattern found in this study has not been reported previously, suggesting that the device design and materials are associated with the failure of this prosthesis. Cite this article: Bone Joint J 2015;97-B:1350–7


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims

Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing.

Methods

A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.



Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims

Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis.

Methods

Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 199 - 201
7 Mar 2023
Brzeszczyńska J Brzeszczyński F

Cite this article: Bone Joint Res 2023;12(3):199–201.


Bone & Joint 360
Vol. 13, Issue 4 | Pages 16 - 19
2 Aug 2024

The August 2024 Knee Roundup360 looks at: Calcification’s role in knee osteoarthritis: implications for surgical decision-making; Lower complication rates and shorter lengths of hospital stay with technology-assisted total knee arthroplasty; Revision surgery: the hidden burden on surgeons; Are preoperative weight loss interventions worthwhile?; Total knee arthroplasty with or without prior bariatric surgery: a systematic review and meta-analysis; Aspirin triumphs in knee arthroplasty: a decade of evidence; Efficacy of DAIR in unicompartmental knee arthroplasty: a glimpse from Oxford.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 362 - 370
9 Jun 2022
Zhou J He Z Cui J Liao X Cao H Shibata Y Miyazaki T Zhang J

Aims

Osteoarthritis (OA) is a common degenerative joint disease. The osteocyte transcriptome is highly relevant to osteocyte biology. This study aimed to explore the osteocyte transcriptome in subchondral bone affected by OA.

Methods

Gene expression profiles of OA subchondral bone were used to identify disease-relevant genes and signalling pathways. RNA-sequencing data of a bone loading model were used to identify the loading-responsive gene set. Weighted gene co-expression network analysis (WGCNA) was employed to develop the osteocyte mechanics-responsive gene signature.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims

To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time.

Methods

We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.


Bone & Joint Open
Vol. 5, Issue 5 | Pages 394 - 400
15 May 2024
Nishi M Atsumi T Yoshikawa Y Okano I Nakanishi R Watanabe M Usui Y Kudo Y

Aims

The localization of necrotic areas has been reported to impact the prognosis and treatment strategy for osteonecrosis of the femoral head (ONFH). Anteroposterior localization of the necrotic area after a femoral neck fracture (FNF) has not been properly investigated. We hypothesize that the change of the weight loading direction on the femoral head due to residual posterior tilt caused by malunited FNF may affect the location of ONFH. We investigate the relationship between the posterior tilt angle (PTA) and anteroposterior localization of osteonecrosis using lateral hip radiographs.

Methods

Patients aged younger than 55 years diagnosed with ONFH after FNF were retrospectively reviewed. Overall, 65 hips (38 males and 27 females; mean age 32.6 years (SD 12.2)) met the inclusion criteria. Patients with stage 1 or 4 ONFH, as per the Association Research Circulation Osseous classification, were excluded. The ratios of anterior and posterior viable areas and necrotic areas of the femoral head to the articular surface were calculated by setting the femoral head centre as the reference point. The PTA was measured using Palm’s method. The association between the PTA and viable or necrotic areas of the femoral head was assessed using Spearman’s rank correlation analysis (median PTA 6.0° (interquartile range 3 to 11.5)).