Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 400 - 411
15 Mar 2023
Hosman AJF Barbagallo G van Middendorp JJ

Aims

The aim of this study was to determine whether early surgical treatment results in better neurological recovery 12 months after injury than late surgical treatment in patients with acute traumatic spinal cord injury (tSCI).

Methods

Patients with tSCI requiring surgical spinal decompression presenting to 17 centres in Europe were recruited. Depending on the timing of decompression, patients were divided into early (≤ 12 hours after injury) and late (> 12 hours and < 14 days after injury) groups. The American Spinal Injury Association neurological (ASIA) examination was performed at baseline (after injury but before decompression) and at 12 months. The primary endpoint was the change in Lower Extremity Motor Score (LEMS) from baseline to 12 months.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 198 - 201
1 Mar 2021
Habeebullah A Rajgor HD Gardner A Jones M

Aims

The British Spine Registry (BSR) was introduced in May 2012 to be used as a web-based database for spinal surgeries carried out across the UK. Use of this database has been encouraged but not compulsory, which has led to a variable level of engagement in the UK. In 2019 NHS England and NHS Improvement introduced a new Best Practice Tariff (BPT) to encourage input of spinal surgical data on the BSR. The aim of our study was to assess the impact of the spinal BPT on compliance with the recording of surgical data on the BSR.

Methods

A retrospective review of data was performed at a tertiary spinal centre between 2018 to 2020. Data were collated from electronic patient records, theatre operating lists, and trust-specific BSR data. Information from the BSR included operative procedures (mandatory), patient consent, email addresses, and demographic details. We also identified Healthcare Resource Groups (HRGs) which qualified for BPT.