Aims. To identify unanswered questions about the prevention, diagnosis, treatment, and rehabilitation and delivery of care of first-time soft-tissue knee injuries (ligament injuries, patella dislocations, meniscal injuries, and articular cartilage) in children (aged 12 years and older) and adults. Methods. The James Lind Alliance (JLA) methodology for Priority Setting Partnerships was followed. An initial survey invited patients and healthcare professionals from the UK to submit any uncertainties regarding soft-tissue knee injury prevention, diagnosis, treatment, and rehabilitation and delivery of care. Over 1,000 questions were received. From these, 74 questions (identifying common concerns) were formulated and checked against the best available evidence. An interim survey was then conducted and 27 questions were taken forward to the final workshop, held in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritization. This was conducted by healthcare professionals, patients, and carers. Results. The top ten included questions regarding prevention, diagnosis, treatment, and rehabilitation. The number one question was, ‘How urgently do soft-tissue knee injuries need to be treated for the best outcome?’. This reflects the concerns of patients, carers, and the wider multidisciplinary team. Conclusion. This validated process has generated ten important priorities for
Research into COVID-19 has been rapid in response to the dynamic global situation, which has resulted in heterogeneity of methodology and the communication of information. Adherence to reporting standards would improve the quality of evidence presented in
Aims. Current levels of hip fracture morbidity contribute greatly to the overall burden on health and social care services. Given the anticipated ageing of the population over the coming decade, there is potential for this burden to increase further, although the exact scale of impact has not been identified in contemporary literature. We therefore set out to predict the
Cite this article:
This review examines the
Cite this article:
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and
The use of joint-preserving surgery of the hip
has been largely abandoned since the introduction of total hip replacement.
However, with the modification of such techniques as pelvic osteotomy,
and the introduction of intracapsular procedures such as surgical
hip dislocation and arthroscopy, previously unexpected options for
the surgical treatment of sequelae of childhood conditions, including
developmental dysplasia of the hip, slipped upper femoral epiphysis
and Perthes’ disease, have become available. Moreover, femoroacetabular
impingement has been identified as a significant aetiological factor
in the development of osteoarthritis in many hips previously considered to
suffer from primary osteoarthritis. As mechanical causes of degenerative joint disease are now recognised
earlier in the disease process, these techniques may be used to
decelerate or even prevent progression to osteoarthritis. We review
the recent development of these concepts and the associated surgical
techniques. Cite this article:
Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality.
Magnetic resonance images (MRI) were obtained of 10 healthy volunteers and 70 patients suffering from various orthopaedic disorders. Selected images of soft tissue, joint, bone and spinal abnormalities are presented and their interpretation is described. Although we have been using MRI for only a very short time, it is already possible to see its advantages: it provides good images of soft-tissues, detailed pictures of bone marrow, and excellent visualisation of the spine and spinal cord. The decision-making process in surgical procedures will in the