The aim of this study was to estimate the 90-day periprosthetic joint infection (PJI) rates following total knee arthroplasty (TKA) and total hip arthroplasty (THA) for osteoarthritis (OA). This was a data linkage study using the New South Wales (NSW) Admitted Patient Data Collection (APDC) and the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR), which collect data from all public and private hospitals in NSW, Australia. Patients who underwent a TKA or THA for OA between 1 January 2002 and 31 December 2017 were included. The main outcome measures were 90-day incidence rates of hospital readmission for: revision arthroplasty for PJI as recorded in the AOANJRR; conservative definition of PJI, defined by T84.5, the PJI diagnosis code in the APDC; and extended definition of PJI, defined by the presence of either T84.5, or combinations of diagnosis and procedure code groups derived from recursive binary partitioning in the APDC.Aims
Methods
National joint registries under-report revisions for periprosthetic joint infection (PJI). We aimed to validate PJI reporting to the Australian Orthopaedic Association National Joint Arthroplasty Registry (AOANJRR) and the factors associated with its accuracy. We then applied these data to refine estimates of the total national burden of PJI. A total of 561 Australian cases of confirmed PJI were captured by a large, prospective observational study, and matched to data available for the same patients through the AOANJRR.Aims
Methods
This study aimed to describe the use of revision knee arthroplasty in Australia and examine changes in lifetime risk over a decade. De-identified individual-level data on all revision knee arthroplasties performed in Australia from 2007 to 2017 were obtained from the Australian Orthopaedic Association National Joint Replacement Registry. Population data and life tables were obtained from the Australian Bureau of Statistics. The lifetime risk of revision surgery was calculated for each year using a standardized formula. Separate calculations were undertaken for males and females.Aims
Methods
This study aims to describe the pre- and postoperative self-reported health and quality of life from a national cohort of patients undergoing elective total conventional hip arthroplasty (THA) and total knee arthroplasty (TKA) in Australia. For context, these data will be compared with patient-reported outcome measures (PROMs) data from other international nation-wide registries. Between 2018 to 2020, and nested within a nationwide arthroplasty registry, preoperative and six-month postoperative PROMs were electronically collected from patients before and after elective THA and TKA. There were 5,228 THA and 8,299 TKA preoperative procedures as well as 3,215 THA and 4,982 TKA postoperative procedures available for analysis. Validated PROMs included the EuroQol five-dimension five-level questionnaire (EQ-5D-5L; range 0 to 100; scored worst-best health), Oxford Hip/Knee Scores (OHS/OKS; range 0 to 48; scored worst-best hip/knee function) and the 12-item Hip/Knee disability and Osteoarthritis Outcome Score (HOOS-12/KOOS-12; range 0 to 100; scored best-worst hip/knee health). Additional items included preoperative expectations, patient-perceived improvement, and postoperative satisfaction. Descriptive analyses were undertaken.Aims
Methods
Displaced femoral neck fractures (FNF) may be treated with partial (hemiarthroplasty, HA) or total hip arthroplasty (THA), with recent recommendations advising that THA be used in community-ambulant patients. This study aims to determine the association between the proportion of FNF treated with THA and year of surgery, day of the week, surgeon practice, and private Data from 67 620 patients in the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) from 1999 to 2016 inclusive were used to generate unadjusted and adjusted analyses of the associations between patient, time, surgeon and institution factors, and the proportion of FNF treated with THA.Aims
Patients and Methods
Femoral stems with exchangeable (modular) necks were introduced
to offer surgeons an increased choice when determining the version,
offset and length of the femoral neck during total hip arthroplasty
(THA). It was hoped that this would improve outcomes and reduce
complications, particularly dislocation. In 2010, the Australian Orthopaedic
Association National Joint Replacement Registry (AOANJRR) first
reported an increased rate of revision after primary THA using femoral
stems with an exchangeable neck. The aim of this study was to provide
a more comprehensive up-to-date analysis of primary THA using femoral
stems with exchangeable and fixed necks. The data included all primary THA procedures performed for osteoarthritis
(OA), reported to the AOANJRR between 01 September 1999 and 31 December
2014. There were 9289 femoral stems with an exchangeable neck and
253 165 femoral stems with a fixed neck. The characteristics of
the patients and prostheses including the bearing surface and stem/neck
metal combinations were examined using Cox proportional hazard ratios
(HRs) and Kaplan-Meier estimates of survivorship. Aims
Materials and Methods
We assessed the outcome of patients who were
lost to follow-up after arthroplasty by a single surgeon. The aim was
to validate the surgeon’s data set with the Australian Orthopaedic
Association National Joint Replacement Registry and determine the
outcome of those patients lost to follow-up. Prospective data on patient demographics, operative details and
outcomes of the surgeon’s 1192 primary unicompartmental knee arthroplasty
(UKA) procedures were analysed. There were 69 knees in patients
who were lost to follow-up, among whom the Registry identified 31
deaths and eight revisions. The cumulative percentage revision (CPR) at seven years using
the additional Registry data was 8.8% (95% confidence interval (CI)
7 to 11). Using the surgeon’s data, the CPR at seven years was 8%
(95% CI 6.3 to 10.1) for the best-case scenario where loss to follow-up
was excluded, and 16% (95% CI 13.8 to 19.4) for the worst-case scenario, where
all patients lost to follow-up were deemed to have been revised.
There was a significantly higher mortality rate in those patients
lost to follow-up. This study demonstrates that a national joint registry can be
used by individual surgeons to establish more accurate revision
rates in their arthroplasty patients. This is expected to facilitate
a more rigorous audit of surgical outcomes by surgeons and lead
to more accurate and uniform reporting of the results of arthroplasty
in general.
Mononuclear osteoclast precursors are present in the wear-particle-associated macrophage infiltrate found in the membrane surrounding loose implants. These cells are capable of differentiating into osteoclastic bone-resorbing cells when co-cultured with the rat osteoblast-like cell line, UMR 106, in the presence of 1,25(OH)2 vitamin D3. In order to develop an in vitro model of osteoclast differentiation which more closely parallels the cellular microenvironment at the bone-implant interface in situ, we determined whether osteoblast-like human bone-derived cells were capable of supporting the differentiation of osteoclasts from arthroplasty-derived cells and analysed the humoral conditions required for this to occur. Long-term co-culture of arthroplasty-derived cells and human trabecular-bone-derived cells (HBDCs) resulted in the formation of numerous tartrate-resistant-acid-phosphatase (TRAP) and vitronectin-receptor (VNR)-positive multinucleated cells capable of extensive resorption of lacunar bone. The addition of 1,25(OH)2 vitamin D3 was not required for the formation of osteoclasts and bone resorption. During the formation there was release of substantial levels of M-CSF and PGE2. Exogenous PGE2 (10−8 to 10−6M) was found to stimulate strongly the resorption of osteoclastic bone. Our study has shown that HBDCs are capable of supporting the formation of osteoclasts from mononuclear phagocyte precursors present in the periprosthetic tissues surrounding a loose implant. The release of M-CSF and PGE2 by activated cells at the bone-implant interface may be important for the formation of osteoclasts at sites of pathological bone resorption associated with aseptic loosening.
Bone loss around replacement prostheses may be related to the activation of mononuclear phagocytes (MNP) by prosthetic wear particles. We investigated how osteoblast-like cells were regulated by human MNP stimulated by particles of prosthetic material. Particles of titanium-6-aluminium-4-vanadium (TiAlV) stimulated MNP to release interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6 and prostaglandin E2 (PGE2). All these mediators are implicated in regulating bone metabolism. Particle-activated MNP inhibited bone cell proliferation and stimulated release of IL-6 and PGE2. The number of cells expressing alkaline phosphatase, a marker associated with mature osteo-blastic cells, was reduced. Experiments with blocking antibodies showed that TNFα was responsible for the reduction in proliferation and the numbers of cells expressing alkaline phosphatase. By contrast, IL-1β stimulated cell proliferation and differentiation. Both IL-1β and TNFα stimulated IL-6 and PGE2release from the osteoblast-like cells. Our results suggest that particle-activated mono-nuclear phagocytes can induce a change in the balance between bone formation and resorption by a number of mechanisms.
Our aim was to determine whether in vitro studies would detect differences in the cellular response to wear particles of two titanium alloys commonly used in the manufacture of joint replacement prostheses. Particles were of the order of 1 μm in diameter representative of those found adjacent to failed prostheses. Exposure of human monocytes to titanium 6-aluminium 4- vanadium (TiAlV) at concentrations of 4 x 107 particles/ml produced a mean prostaglandin E2 release of 2627.6 pM; this was significantly higher than the 317.4 pM induced by titanium 6-aluminium 7-niobium alloy (TiAlNb) particles (p = 0.006). Commercially-pure titanium particles induced a release of 347.8 pM. In addition, TiAlV stimulated significantly more release of the other cell mediators, interleukin-1, tumour necrosis factor and interleukin-6. At lower concentrations of particles there was less mediator release and less obvious differences between materials. None of the materials caused significant toxicity. The levels of inflammatory mediators released by phagocytic cells in response to wear particles may influence the amount of periprosthetic bone loss. Our findings have shown that in vitro studies can detect differences in cellular response induced by particles of similar titanium alloys in common clinical use, although in vivo studies have shown little difference. While in vitro studies should not be used as the only form of assessment, they must be considered when assessing the relative biocompatibility of different implant materials.