Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the
In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced
Upper limb amputations, ranging from transhumeral to partial hand, can be devastating for patients, their families, and society. Modern paradigm shifts have focused on reconstructive options after upper extremity limb loss, rather than considering the amputation an ablative procedure. Surgical advancements such as targeted muscle reinnervation and regenerative peripheral nerve interface, in combination with technological development of modern prosthetics, have expanded options for patients after amputation. In the near future, advances such as osseointegration, implantable myoelectric sensors, and implantable nerve cuffs may become more widely used and may expand the options for prosthetic integration, myoelectric signal detection, and restoration of sensation. This review summarizes the current advancements in
Despite being one of the most common injuries around the elbow, the optimal treatment of olecranon fractures is far from established and stimulates debate among both general orthopaedic trauma surgeons and upper limb specialists. It is almost universally accepted that stable non-displaced fractures can be safely treated nonoperatively with minimal specialist input. Internal fixation is recommended for the vast majority of displaced fractures, with a range of techniques and implants to choose from. However, there is concern regarding the complication rates, largely related to symptomatic metalwork resulting in high rates of implant removal. As the number of elderly patients sustaining these injuries increases, we are becoming more aware of the issues associated with fixation in osteoporotic bone and the often fragile soft-tissue envelope in this group. Given this, there is evidence to support an increasing role for nonoperative management in this high-risk demographic group, even in those presenting with displaced and/or multifragmentary fracture patterns. This review summarizes the available literature to date, focusing predominantly on the management techniques and available implants for stable fractures of the olecranon. It also offers some insights into the potential avenues for future research, in the hope of addressing some of the pertinent questions that remain unanswered. Cite this article:
Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan. Cite this article: Abstract
The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction.
Dislocation following total hip arthroplasty (THA) is a well-known and potentially devastating complication. Clinicians have used many strategies in attempts to prevent dislocation since the introduction of THA. While the importance of postoperative care cannot be ignored, particular emphasis has been placed on preoperative planning in the prevention of dislocation. The strategies have progressed from more traditional approaches, including modular implants, the size of the femoral head, and augmentation of the offset, to newer concepts, including patient-specific component positioning combined with computer navigation, robotics, and the use of dual-mobility implants. As clinicians continue to pursue improved outcomes and reduced complications, these concepts will lay the foundation for future innovation in THA and ultimately improved outcomes. Cite this article:
Total knee arthroplasty (TKA) is a major orthopaedic
intervention. The length of a patient's stay has been progressively
reduced with the introduction of enhanced recovery protocols: day-case
surgery has become the ultimate challenge. This narrative review shows the potential limitations of day-case
TKA. These constraints may be social, linked to patient’s comorbidities,
or due to surgery-related adverse events (e.g. pain, post-operative
nausea and vomiting, etc.). . Using patient stratification, tailored
The coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented challenges to healthcare systems worldwide. Orthopaedic departments have adopted business continuity models and guidelines for essential and non-essential surgeries to preserve hospital resources as well as protect patients and staff. These guidelines broadly encompass reduction of ambulatory care with a move towards telemedicine, redeployment of orthopaedic surgeons/residents to the frontline battle against COVID-19, continuation of education and research through web-based means, and cancellation of non-essential elective procedures. However, if containment of COVID-19 community spread is achieved, resumption of elective orthopaedic procedures and transition plans to return to normalcy must be considered for orthopaedic departments. The COVID-19 pandemic also presents a moral dilemma to the orthopaedic surgeon considering elective procedures. What is the best treatment for our patients and how does the fear of COVID-19 influence the risk-benefit discussion during a pandemic? Surgeons must deliberate the fine balance between elective surgery for a patient’s wellbeing versus risks to the operating team and utilization of precious hospital resources. Attrition of healthcare workers or Orthopaedic surgeons from restarting elective procedures prematurely or in an unsafe manner may render us ill-equipped to handle the second wave of infections. This highlights the need to develop effective screening protocols or preoperative COVID-19 testing before elective procedures in high-risk, elderly individuals with comorbidities. Alternatively, high-risk individuals should be postponed until the risk of nosocomial COVID-19 infection is minimal. In addition, given the higher mortality and perioperative morbidity of patients with COVID-19 undergoing surgery, the decision to operate must be carefully deliberated. As we ramp-up elective services and get “back to business” as orthopaedic surgeons, we have to be constantly mindful to proceed in a cautious and calibrated fashion, delivering the best care, while maintaining utmost vigilance to prevent the resurgence of COVID-19 during this critical transition period. Cite this article:
Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal. There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced. Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described. The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery. Cite this article:
Ceramic bearings have several desirable properties, such as resistance to wear, hardness, and biocompatibility, that favour it as an articulating surface in hip arthroplasty. However, ceramic fracture remains a concern. We have reviewed the contemporary literature, addressing the factors that can influence the incidence of ceramic bearing surface fracture. Cite this article:
Nerve transfer has become a common and often effective reconstructive strategy for proximal and complex peripheral nerve injuries of the upper limb. This case-based discussion explores the principles and potential benefits of nerve transfer surgery and offers in-depth discussion of several established and valuable techniques including: motor transfer for elbow flexion after musculocutaneous nerve injury, deltoid reanimation for axillary nerve palsy, intrinsic re-innervation following proximal ulnar nerve repair, and critical sensory recovery despite non-reconstructable median nerve lesions.Abstract
Periprosthetic joint infection (PJI) is one of
the most feared and challenging complications following total knee arthroplasty.
We provide a detailed description of our current understanding regarding
the management of PJI of the knee, including diagnostic aids,
pre-operative planning, surgical treatment, and outcome. Cite this article: