We evaluated the accuracy with which a custom-made
acetabular component could be positioned at revision arthroplasty
of the hip in patients with a Paprosky type 3 acetabular defect. A total of 16 patients with a Paprosky type 3 defect underwent
revision surgery using a custom-made trabecular titanium implant.
There were four men and 12 women with a median age of 67 years (48
to 79). The planned inclination (INCL), anteversion (AV), rotation
and centre of rotation (COR) of the implant were compared with the post-operative
position using CT scans. A total of seven implants were malpositioned in one or more parameters:
one with respect to INCL, three with respect to AV, four with respect
to rotation and five with respect to the COR. To the best of our knowledge, this is the first study in which
CT data acquired for the pre-operative planning of a custom-made
revision acetabular implant have been compared with CT data on the
post-operative position. The results are encouraging. Cite this article:
We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation. A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen. These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported.
Aims. Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of
Aims. Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in
Aims. Osteolysis, secondary to local and systemic physiological effects, is a major challenge in total hip arthroplasty (THA). While osteolytic defects are commonly observed in long-term follow-up, how such lesions alter the distribution of stress is unclear. The aim of this study was to quantitatively describe the biomechanical implication of such lesions by performing subject-specific finite-element (FE) analysis on patients with osteolysis after THA. Patients and Methods. A total of 22 hemipelvis FE models were constructed in order to assess the transfer of load in 11 patients with osteolysis around the acetabular component of a THA during slow walking and a fall onto the side. There were nine men and two women. Their mean age was 69 years (55 to 81) at final follow-up. Changes in peak stress values and loads to fracture in the presence of the osteolytic defects were measured. Results. The von Mises stresses were increased in models of those with and those without defects for both loading scenarios. Although some regions showed increases in stress values of up to 100%, there was only a moderate 11.2% increase in von Mises stress in the series as a whole. The site of fracture changed in some models with lowering of the load to fracture by 500 N. The most common site of fracture was the pubic ramus. This was more frequent in models with
Aims. After failed acetabular fractures, total hip arthroplasty (THA) is a challenging procedure and considered the gold standard treatment. The complexity of the procedure depends on the fracture pattern and the initial fracture management. This study’s primary aim was to evaluate patient-reported outcome measures (PROMs) for patients who underwent delayed uncemented acetabular THA after acetabular fractures. The secondary aims were to assess the radiological outcome and the incidence of the associated complications in those patients. Methods. A total of 40 patients underwent cementless acetabular THA following failed treatment of acetabular fractures. The postoperative clinical and radiological outcomes were evaluated for all the cohort. Results. The median (interquartile range (IQR)) Oxford Hip Score (OHS) improved significantly from 9.5 (7 to 11.5), (95% confidence interval (CI) (8 to 10.6)) to 40 (39 to 44), (95% CI (40 to 43)) postoperatively at the latest follow-up (p < 0.001). It was worth noting that the initial acetabular fracture type (simple vs complex), previous acetabular treatment (ORIF vs conservative), fracture union, and restoration of anatomical centre of rotation (COR) did not affect the final OHS. The reconstructed centre of rotation (COR) was restored in 29 (72.5%) patients. The mean abduction angle in whom acetabular fractures were managed conservatively was statistically significantly higher than the surgically treated patients 42.6° (SD 7.4) vs 38° (SD 5.6)) (p = 0.032). We did not have any case of acetabular or femoral loosening at the time of the last follow-up. We had two patients with successful two-stage revision for infection with overall eight-year survival rate was 95.2% (95% CI 86.6% to 100%) with revision for any reason at a median (IQR) duration of follow-up 50 months (16 to 87) months following THA. Conclusion. Delayed cementless acetabular THA in patients with previous failed acetabular fracture treatments produces good clinical outcomes (PROMS) with excellent survivorship, despite the technically demanding nature of the procedure. The initial fracture treatment does not influence the outcome of delayed THA. In selected cases of acetabular fractures (either nondisplaced or with secondary congruency), the initial nonoperative treatment neither resulted in
Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.Aims
Methods
Pelvic discontinuity represents a rare but challenging
problem for orthopaedic surgeons. It is most commonly encountered
during revision total hip replacement, but can also result from
an iatrogentic acetabular fracture during hip replacement. The general
principles in management of pelvic discontinuity include restoration
of the continuity between the ilium and the ischium, typically with
some form of plating. Bone grafting is frequently required to restore
pelvic bone stock. The acetabular component is then impacted, typically
using an uncemented, trabecular metal component. Fixation with multiple
supplemental screws is performed. For
Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).Aims
Methods
The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.Aims
Methods
Aims. Custom flange acetabular components (CFACs) are a patient-specific option for addressing
The aim of this study was to determine the outcome of all primary total hip arthroplasties (THAs) and their subsequent revision procedures in patients aged under 50 years performed at our institution. All 1,049 primary THAs which were undertaken in 860 patients aged under 50 years between 1988 and 2018 in our tertiary care institution were included. We used cemented implants in both primary and revision surgery. Impaction bone grafting was used in patients with acetabular or femoral bone defects. Kaplan-Meier analyses were used to determine the survival of primary and revision THA with the endpoint of revision for any reason, and of revision for aseptic loosening.Aims
Methods
Bone stock restoration of acetabular bone defects using impaction bone grafting (IBG) in total hip arthroplasty may facilitate future re-revision in the event of failure of the reconstruction. We hypothesized that the acetabular bone defect during re-revision surgery after IBG was smaller than during the previous revision surgery. The clinical and radiological results of re-revisions with repeated use of IBG were also analyzed. In a series of 382 acetabular revisions using IBG and a cemented component, 45 hips (45 patients) that had failed due to aseptic loosening were re-revised between 1992 and 2016. Acetabular bone defects graded according to Paprosky during the first and the re-revision surgery were compared. Clinical and radiological findings were analyzed over time. Survival analysis was performed using a competing risk analysis.Aims
Methods
We retrospectively evaluated 42 hips which had undergone acetabular reconstruction using the Kerboull acetabular reinforcement device between September 1994 and December 1998. We used autogenous bone chips from the ilium and ceramic particle morsellised grafts, even in large acetabular bone defects, in the early stages of the study. Thereafter, femoral head allograft was used as bulk graft in patients with
The aim of this study was to analyze the effect of a lateral rim mesh on the survival of primary total hip arthroplasty (THA) in young patients, aged 50 years or younger. We compared a study group of 235 patients (257 hips) who received a primary THA with the use of impaction bone grafting (IBG) with an additional lateral rim mesh with a group of 306 patients (343 hips) who received IBG in the absence of a lateral rim mesh during the same period from 1988 to 2015. In the mesh group, there were 74 male and 183 female patients, with a mean age of 35 years (13 to 50). In the no-mesh group, there were 173 male and 170 female patients, with a mean age of 38 years (12.6 to 50). Cox regression analyses were performed to study the effect of a lateral rim mesh on acetabular component survival. Kaplan–Meier analyses with 95% confidence intervals (CIs) were performed to estimate the survival of the acetabular implant.Aims
Patients and Methods
The use of trabecular metal (TM) shells supported by augments has provided good mid-term results after revision total hip arthroplasty (THA) in patients with a bony defect of the acetabulum. The aim of this study was to assess the long-term implant survivorship and radiological and clinical outcomes after acetabular revision using this technique. Between 2006 and 2010, 60 patients (62 hips) underwent acetabular revision using a combination of a TM shell and augment. A total of 51 patients (53 hips) had complete follow-up at a minimum of seven years and were included in the study. Of these patients, 15 were men (29.4%) and 36 were women (70.6%). Their mean age at the time of revision THA was 64.6 years (28 to 85). Three patients (5.2%) had a Paprosky IIA defect, 13 (24.5%) had a type IIB defect, six (11.3%) had a type IIC defect, 22 (41.5%) had a type IIIA defect, and nine (17%) had a type IIIB defect. Five patients (9.4%) also had pelvic discontinuity.Aims
Patients and Methods
This study presents the long-term survivorship, risk factors for prosthesis survival, and an assessment of the long-term effects of changes in surgical technique in a large series of patients treated by metal-on-metal (MoM) hip resurfacing arthroplasty (HRA). Between November 1996 and January 2012, 1074 patients (1321 hips) underwent HRA using the Conserve Plus Hip Resurfacing System. There were 787 men (73%) and 287 women (27%) with a mean age of 51 years (14 to 83). The underlying pathology was osteoarthritis (OA) in 1003 (75.9%), developmental dysplasia of the hip (DDH) in 136 (10.3%), avascular necrosis in 98 (7.4%), and other conditions, including inflammatory arthritis, in 84 (6.4%).Aims
Patients and Methods
The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model. A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA).Aims
Materials and Methods
The management of acetabular defects at the time of revision hip arthroplasty surgery is a challenge. This study presents the results of a long-term follow-up study of the use of irradiated allograft bone in acetabular reconstruction. Between 1990 and 2000, 123 hips in 110 patients underwent acetabular reconstruction for aseptic loosening, using impaction bone grafting with frozen, irradiated, and morsellized femoral heads and a cemented acetabular component. A total of 55 men and 55 women with a mean age of 64.3 years (26 to 97) at the time of revision surgery are included in this study.Aims
Patients and Methods
In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN).Objectives
Methods
The aim of this study was to compare the incidence of aseptic
loosening after the use of a cemented acetabular component and a
Trabecular Metal (TM) acetabular component (Zimmer Inc., Warsaw,
Indiana) at acetabular revision with bone impaction grafting. A total of 42 patients were included in the study. Patients were
randomised to receive an all- polyethylene cemented acetabular component
(n = 19) or a TM component (n = 23). Radiostereometric analysis
and conventional radiographic examinations were performed regularly
up to two years post-operatively or until further revision.Aims
Patients and Methods
Hip resurfacing arthroplasty (HRA) is an alternative to conventional
total hip arthroplasty for patients with osteonecrosis (ON) of the
femoral head. Our aim was to report the long-term outcome of HRA,
which is not currently known. Long-term survivorship, clinical scores and radiographic results
for 82 patients (99 hips) treated with HRA for ON over a period
of 18 years were reviewed retrospectively. The mean age of the 67
men and 15 women at the time of surgery was 40.8 years (14 to 64).
Patients were resurfaced regardless of the size of the osteonecrotic
lesion.Aims
Patients and Methods
This review summarises the technique of impaction
grafting with mesh augmentation for the treatment of uncontained
acetabular defects in revision hip arthroplasty. The ideal acetabular revision should restore bone stock, use
a small socket in the near-anatomic position, and provide durable
fixation. Impaction bone grafting, which has been in use for over
40 years, offers the ability to achieve these goals in uncontained
defects. The precepts of modern, revision impaction grafting are
that the segmental or cavitary defects must be supported with a
mesh; the contained cavity is filled with vigorously impacted morselised
fresh-frozen allograft; and finally, acrylic cement is used to stabilise
the graft and provide rigid, long-lasting fixation of the revised
acetabular component. Favourable results have been published with this technique. While
having its limitations, it is a viable option to address large acetabular
defects in revision arthroplasty. Cite this article:
Reconstruction of the acetabulum after resection of a periacetabular
malignancy is technically challenging and many different techniques
have been used with varying success. Our aim was to prepare a systematic
review of the literature dealing with these techniques in order
to clarify the management, the rate of complications and the outcomes. A search of PubMed and MEDLINE was conducted for English language
articles published between January 1990 and February 2017 with combinations
of key search terms to identify studies dealing with periacetabular
resection with reconstruction in patients with a malignancy. Studies
in English that reported radiographic or clinical outcomes were
included. Data collected from each study included: the number and
type of reconstructions, the pathological diagnosis of the lesions,
the mean age and follow-up, gender distribution, implant survivorship, complications,
functional outcome, and mortality. The results from individual studies
were combined for the general analysis, and then grouped according
to the type of reconstruction. Aims
Patients and Methods
The custom triflange is a patient-specific implant
for the treatment of severe bone loss in revision total hip arthroplasty
(THA). Through a process of three-dimensional modelling and prototyping,
a hydroxyapatite-coated component is created for acetabular reconstruction.
There are seven level IV studies describing the clinical results
of triflange components. The most common complications include dislocation
and infection, although the rates of implant removal are low. Clinical
results are promising given the challenging problem. We describe
the design, manufacture and implantation process and review the
clinical results, contrasting them to other methods of acetabular
reconstruction in revision THA. Cite this article:
We present the results of 62 consecutive acetabular
revisions using impaction bone grafting and a cemented polyethylene
acetabular component in 58 patients (13 men and 45 women) after
a mean follow-up of 27 years (25 to 30). All patients were prospectively
followed. The mean age at revision was 59.2 years (23 to 82). We performed Kaplan–Meier (KM) analysis and also a Competing
Risk (CR) analysis because with long-term follow-up, the presence
of a competing event (i.e. death) prevents the occurrence of the
endpoint of re-revision. A total of 48 patients (52 hips) had died or had been re-revised
at final review in March 2011. None of the deaths were related to
the surgery. The mean Harris hip score of the ten surviving hips
in ten patients was 76 points (45 to 99). The KM survivorship at 25 years for the endpoint ‘re-revision
for any reason’ was 58.0% (95% confidence interval (CI) 38 to 73)
and for ‘re-revision for aseptic loosening’ 72.1% (95% CI 51 to
85). With the CR analysis we calculated the KM analysis overestimates
the failure rate with respectively 74% and 93% for these endpoints.
The current study shows that acetabular impaction bone grafting
revisions provide good clinical results at over 25 years. Cite this article:
The repair of chondral lesions associated with
femoroacetabular impingement requires specific treatment in addition
to that of the impingement. In this single-centre retrospective
analysis of a consecutive series of patients we compared treatment
with microfracture (MFx) with a technique of enhanced microfracture
autologous matrix-induced chondrogenesis (AMIC). Acetabular grade III and IV chondral lesions measuring between
2 cm2 and 8 cm2 in 147 patients were treated
by MFx in 77 and AMIC in 70. The outcome was assessed using the
modified Harris hip score at six months and one, two, three, four
and five years post-operatively. The outcome in both groups was
significantly improved at six months and one year post-operatively.
During the subsequent four years the outcome in the MFx group slowly deteriorated,
whereas that in the AMIC group remained stable. Six patients in
the MFx group subsequently required total hip arthroplasty, compared
with none in the AMIC group We conclude that the short-term clinical outcome improves in
patients with acetabular chondral damage following both MFx and
AMIC. However, the AMIC group had better and more durable improvement,
particularly in patients with large (≥ 4 cm2) lesions. Cite this article:
A common situation presenting to the orthopaedic
surgeon today is a worn acetabular liner with substantial acetabular
and pelvic osteolysis. The surgeon has many options for dealing
with osteolytic defects. These include allograft, calcium based
substitutes, demineralised bone matrix, or combinations of these
options with or without addition of platelet rich plasma. To date
there are no clinical studies to determine the efficacy of using
bone-stimulating materials in osteolytic defects at the time of
revision surgery and there are surprisingly few studies demonstrating
the clinical efficacy of these treatment options. Even when radiographs
appear to demonstrate incorporation of graft material CT studies
have shown that incorporation is incomplete. The surgeon, in choosing
a graft material for a surgical procedure must take into account
the efficacy, safety, cost and convenience of that material. Cite this article:
Cartilage defects of the hip cause significant
pain and may lead to arthritic changes that necessitate hip replacement.
We propose the use of fresh osteochondral allografts as an option
for the treatment of such defects in young patients. Here we present
the results of fresh osteochondral allografts for cartilage defects
in 17 patients in a prospective study. The underlying diagnoses
for the cartilage defects were osteochondritis dissecans in eight
and avascular necrosis in six. Two had Legg-Calve-Perthes and one
a femoral head fracture. Pre-operatively, an MRI was used to determine
the size of the cartilage defect and the femoral head diameter.
All patients underwent surgical hip dislocation with a trochanteric
slide osteotomy for placement of the allograft. The mean age at
surgery was 25.9 years (17 to 44) and mean follow-up was 41.6 months
(3 to 74). The mean Harris hip score was significantly better after
surgery (p <
0.01) and 13 patients had fair to good outcomes.
One patient required a repeat allograft, one patient underwent hip
replacement and two patients are awaiting hip replacement. Fresh
osteochondral allograft is a reasonable treatment option for hip
cartilage defects in young patients. Cite this article:
Acetabular bone loss is a challenging problem
facing the revision total hip replacement surgeon. Reconstruction
of the acetabulum depends on the presence of anterosuperior and
posteroinferior pelvic column support for component fixation and
stability. The Paprosky classification is most commonly used when
determining the location and degree of acetabular bone loss. Augments
serve the function of either providing primary construct stability
or supplementary fixation. When a pelvic discontinuity is encountered we advocate the use
of an acetabular distraction technique with a jumbo cup and modular
porous metal acetabular augments for the treatment of severe acetabular
bone loss and associated chronic pelvic discontinuity. Cite this article:
Based on the first implementation of mixing antibiotics
into bone cement in the 1970s, the Endo-Klinik has used one stage
exchange for prosthetic joint infection (PJI) in over 85% of cases.
Looking carefully at current literature and guidelines for PJI treatment,
there is no clear evidence that a two stage procedure has a higher
success rate than a one-stage approach. A cemented one-stage exchange
potentially offers certain advantages, mainly based on the need
for only one operative procedure, reduced antibiotics and hospitalisation time.
In order to fulfill a one-stage approach, there are obligatory pre-,
peri- and post-operative details that need to be meticulously respected,
and are described in detail. Essential pre-operative diagnostic
testing is based on the joint aspiration with an exact identification
of any bacteria. The presence of a positive bacterial culture and
respective antibiogram are essential, to specify the antibiotics
to be loaded to the bone cement, which allows a high local antibiotic
elution directly at the surgical side. A specific antibiotic treatment
plan is generated by a microbiologist. The surgical success relies
on the complete removal of all pre-existing hardware, including
cement and restrictors and an aggressive and complete debridement
of any infected soft tissues and bone material. Post-operative systemic
antibiotic administration is usually completed after only ten to
14 days. Cite this article:
A total of 31 patients, (20 women, 11 men; mean
age 62.5 years old; 23 to 81), who underwent conversion of a Girdlestone
resection-arthroplasty (RA) to a total hip replacement (THR) were
compared with 93 patients, (60 women, 33 men; mean age 63.4 years
old; 20 to 89), who had revision THR surgery for aseptic loosening
in a retrospective matched case-control study. Age, gender and the
extent of the pre-operative bone defect were similar in all patients.
Mean follow-up was 9.3 years (5 to 18). Pre-operative function and range of movement were better in the
control group (p = 0.01 and 0.003, respectively) and pre-operative
leg length discrepancy (LLD) was greater in the RA group (p <
0.001). The post-operative clinical outcome was similar in both
groups except for mean post-operative LLD, which was greater in
the study group (p = 0.003). There was a significant interaction
effect for LLD in the study group (p <
0.001). A two-way analysis
of variance showed that clinical outcome depended on patient age
(patients older than 70 years old had worse pre-operative pain,
p = 0.017) or bone defect (patients with a large acetabular bone
defect had higher LLD, p = 0.006, worse post-operative function
p = 0.009 and range of movement, p = 0.005), irrespective of the
group. Despite major acetabular and femoral bone defects requiring complex
surgical reconstruction techniques, THR after RA shows a clinical
outcome similar to those obtained in aseptic revision surgery for
hips with similar sized bone defects. Cite this article:
Migration of the acetabular component may give rise to oval-shaped bone defects in the acetabulum. The oblong implant is designed to fill these defects and achieve a stable cementless anchorage with no significant bone loss. We prospectively reviewed 133 oblong long oblique revision components at a mean follow-up of 9.74 years (0.6 to 14). All had been used in revisions for defects of type IIB to IIIB according to Paprosky. Aseptic loosening was the reason for revision in 11 cases (8.3%) and deep infection in seven (5.3%). The probability of implant survival over a 12-year follow-up estimated by the Kaplan-Meier method gave a survival rate of 0.85% respectively 0.90% when deep infection was excluded as the endpoint. Our study supports the use of these components in defects from IIB to IIIA. The main precondition for success is direct contact of more than half of the surface of the implant with the host acetabular bone.
We investigated the detailed anatomy of the gluteus
maximus, gluteus medius and gluteus minimus and their neurovascular
supply in 22 hips in 11 embalmed adult Caucasian human cadavers.
This led to the development of a surgical technique for an extended
posterior approach to the hip and pelvis that exposes the supra-acetabular
ilium and preserves the glutei during revision hip surgery. Proximal
to distal mobilisation of the gluteus medius from the posterior
gluteal line permits exposure and mobilisation of the superior gluteal
neurovascular bundle between the sciatic notch and the entrance
to the gluteus medius, enabling a wider exposure of the supra-acetabular
ilium. This technique was subsequently used in nine patients undergoing
revision total hip replacement involving the reconstruction of nine
Paprosky 3B acetabular defects, five of which had pelvic discontinuity.
Intra-operative electromyography showed that the innervation of
the gluteal muscles was not affected by surgery. Clinical follow-up
demonstrated good hip abduction function in all patients. These
results were compared with those of a matched cohort treated through
a Kocher–Langenbeck approach. Our modified approach maximises the
exposure of the ilium above the sciatic notch while protecting the
gluteal muscles and their neurovascular bundle. Cite this article: Bone Joint J 2014;96-B:48–53.
The increasing need for total hip replacement
(THR) in an ageing population will inevitably generate a larger number
of revision procedures. The difficulties encountered in dealing
with the bone deficient acetabulum are amongst the greatest challenges
in hip surgery. The failed acetabular component requires reconstruction
to restore the hip centre and improve joint biomechanics. Impaction
bone grafting is successful in achieving acetabular reconstruction
using both cemented and cementless techniques. Bone graft incorporation
restores bone stock whilst providing good component stability. We
provide a summary of the evidence and current literature regarding impaction
bone grafting using both cemented and cementless techniques in revision
THR. Cite this article:
We report the clinical and radiological outcomes
of a series of contemporary cementless ceramic-on-ceramic total hip
replacements (THRs) at ten years in patients aged ≤ 55 years of
age. Pre- and post-operative activity levels are described. A total
of 120 consecutive ceramic cementless THRs were performed at a single
centre in 110 patients from 1997 to 1999. The mean age of the patients
at operation was 45 years (20 to 55). At ten years, four patients
had died and six were lost to follow-up, comprising ten hips. The
mean post-operative Harris hip score was 94.7 (55 to 100). Radiological
analysis was undertaken in 90 available THRs of the surviving 106
hips at final review: all had evidence of stable bony ingrowth,
with no cases of osteolysis. Wear was undetectable. There were four
revisions. The survival for both components with revision for any
cause as an endpoint was 96.5% (95% confidence interval 94.5 to
98.7). The mean modified University of California, Los Angeles activity
level rose from a mean of 6.4 (4 to 10) pre-operatively to 9.0 (6
to 10) at the ten-year post-operative period. Alumina ceramic-on-ceramic bearings in cementless primary THR
in this series have resulted in good clinical and radiological outcomes
with undetectable rates of wear and excellent function in the demanding
younger patient group at ten years. Cite this article:
In developmental dysplasia of the hip (DDH),
a bone defect is often observed superior to the acetabulum after
the reconstruction at the level of the true acetabulum during total
hip replacement (THR). However, the essential amount of uncemented
acetabular component coverage required for a satisfactory outcome
remains controversial. The purpose of this study was to assess the
stability and function of acetabular components with a lack of coverage >
30% (31% to 50%). A total of 760 DDH patients underwent THR with
acetabular reconstruction at the level of the true floor. Lack of
coverage above the acetabular component of >
30% occurred in 56
patients. Intra-operatively, autogenous morcellised bone grafts
were used to fill the uncovered portion. Other than two screws inserted through
the acetabular shell, no additional structural supports were used
in these hips. In all, four patients were lost to follow-up. Therefore,
52 patients (52 hips, 41 women and 11 men) with a mean age of 60.1
years (42 to 78) were available for this study at a mean of 4.8
years (3 to 7). There were no instances of prosthesis revision or
marked loosening during the follow-up. The Harris hip score improved
from a mean of 40.7 points ( Cite this article:
Deep prosthetic joint infection remains an uncommon but serious complication of total hip replacement. We reviewed 24 patients with recalcitrant hip wounds following infected total hip replacement treated with either pedicled rectus femoris or vastus lateralis muscle flaps between 1998 and 2009. The mean age of the patients was 67.4 years (42 to 86) with ten men and 14 women. There had been a mean of four (1 to 8) previous attempts to close the wound. A total of 20 rectus femoris and five vastus lateralis flaps were used, with one of each type of flap failing and requiring further reconstruction. All patients had positive microbiology. At a mean follow-up of 47 months (9 to 128), 22 patients had a healed wound and two had a persistent sinus. The prosthesis had been retained in five patients. In the remainder it had been removed, and subsequently re-implanted in nine patients. Six patients continued to take antibiotics at final follow-up. This series demonstrates the effectiveness of pedicled muscle flaps in healing these infected wounds. The high number of previous debridements suggests that these flaps could have been used earlier.
In this retrospective study we evaluated the
proficiency of shelf autograft in the restoration of bone stock
as part of primary total hip replacement (THR) for hip dysplasia,
and in the results of revision arthroplasty after failure of the primary
arthroplasty. Of 146 dysplastic hips treated by THR and a shelf
graft, 43 were revised at an average of 156 months, 34 of which
were suitable for this study (seven hips were excluded because of
insufficient bone-stock data and two hips were excluded because
allograft was used in the primary THR). The acetabular bone stock
of the hips was assessed during revision surgery. The mean implant–bone
contact was 58% (50% to 70%) at primary THR and 78% (40% to 100%)
at the time of the revision, which was a significant improvement
(p <
0.001). At primary THR all hips had had a segmental acetabular
defect >
30%, whereas only five (15%) had significant segmental
bone defects requiring structural support at the time of revision.
In 15 hips (44%) no bone graft or metal augments were used during
revision. A total of 30 hips were eligible for the survival study. At a
mean follow-up of 103 months (27 to 228), two aseptic and two septic
failures had occurred. Kaplan-Meier survival analysis of the revision
procedures demonstrated a ten-year survival rate of 93.3% (95% confidence
interval (CI) 78 to 107) with clinical or radiological failure as
the endpoint. The mean Oxford hip score was 38.7 (26 to 46) for
non-revised cases at final follow-up. Our results indicate that the use of shelf autografts during
THR for dysplastic hips restores bone stock, contributing to the
favourable survival of the revision arthroplasty should the primary
procedure fail. Cite this article:
The practice of removing a well-fixed cementless
femoral component is associated with high morbidity. Ceramic bearing
couples are low wearing and their use minimises the risk of subsequent
further revision due to the production of wear debris. A total of
165 revision hip replacements were performed, in which a polyethylene-lined acetabular
component was revised to a new acetabular component with a ceramic
liner, while retaining the well-fixed femoral component. A titanium
sleeve was placed over the used femoral trunnion, to which a ceramic
head was added. There were 100 alumina and 65 Delta bearing couples
inserted. The mean Harris hip score improved significantly from 71.3 (9.0
to 100.0) pre-operatively to 91.0 (41.0 to 100.0) at a mean follow
up of 4.8 years (2.1 to 12.5) (p <
0.001). No patients reported
squeaking of the hip. There were two fractures of the ceramic head, both in alumina
bearings. No liners were seen to fracture. No fractures were observed
in components made of Delta ceramic. At 8.3 years post-operatively
the survival with any cause of failure as the endpoint was 96.6%
(95% confidence interval (CI) 85.7 to 99.3) for the acetabular component and
94.0% (95% CI 82.1 to 98.4) for the femoral component. The technique of revising the acetabular component in the presence
of a well-fixed femoral component with a ceramic head placed on
a titanium sleeve over the used trunnion is a useful adjunct in
revision hip practice. The use of Delta ceramic is recommended. Cite this article:
Osteolysis remains a common reason for revision
after total hip arthroplasty (THA). For osteolysis associated with loose
cups, revision is indicated. For osteolysis around a well-fixed
cup, the decision is more controversial. The data available data
support retention of the cupwith lesional treatment, working through
screw holes and access channels for debridement and grafting. The
choice of graft material to fill defects, if any, remains controversial. Several
studies demonstrate good survivorship with cup retention strategies.
Complete revision allows more complete debridement of the lesion
and better graft fill, and allows implantation of a modern cup,
typically with a full line of liners and bearing surfaces available.
Additionally, revision allows fine tuning of the orientation of
the cup, which may be advantageous for optimising hip stability.
The author prefers to retain a well-fixed cup if it meets the following
criteria: it is well-fixed to intra-operative testing, it is well-positioned,
it is of sufficient size to allow insertion of a new liner with
a reasonable head size, new liners are available, and the hip is
stable to intra-operative trialing after liner insertion.
The mechanical performance of the cement-in-cement interface in revision surgery has not been fully investigated. The quantitative effect posed by interstitial fluids and roughening of the primary mantle remains unclear. We have analysed the strength of the bilaminar cement-bone interface after exposure of the surface of the primary mantle to roughening and fluid interference. The end surfaces of cylindrical blocks of cement were machined smooth (Ra = 200 nm) or rough (Ra = 5 μm) and exposed to either different volumes of water and carboxymethylcellulose (a bone-marrow equivalent) or left dry. Secondary blocks were cast against the modelled surface. Monoblocks of cement were used as a control group. The porosity of the samples was investigated using micro-CT. Samples were exposed to a single shearing force to failure. The mean failure load of the monoblock control was 5.63 kN (95% confidence interval (CI) 5.17 to 6.08) with an estimated shear strength of 36 MPa. When small volumes of any fluid or large volumes were used, the respective values fell between 4.66 kN and 4.84 kN with no significant difference irrespective of roughening (p >
0.05). Large volumes of carboxymethylcellulose significantly weakened the interface. Roughening in this group significantly increased the strength with failure loads of 2.80 kN (95% CI 2.37 to 3.21) compared with 0.86 kN (95% CI 0.43 to 1.27) in the smooth variant. Roughening of the primary mantle may not therefore be as crucial as has been previously thought in clinically relevant circumstances.
We present an update of the clinical and radiological results of 62 consecutive acetabular revisions using impacted morsellised cancellous bone grafts and a cemented acetabular component in 58 patients, at a mean follow-up of 22.2 years (20 to 25). The Kaplan-Meier survivorship for the acetabular component with revision for any reason as the endpoint was 75% at 20 years (95% confidence interval (CI) 62 to 88) when 16 hips were at risk. Excluding two revisions for septic loosening at three and six years, the survivorship at 20 years was 79% (95% CI 67 to 93). With further exclusions of one revision of a well-fixed acetabular component after 12 years during a femoral revision and two after 17 years for wear of the acetabular component, the survivorship for aseptic loosening was 87% at 20 years (95% CI 76 to 97). At the final review 14 of the 16 surviving hips had radiographs available. There was one additional case of radiological loosening and four acetabular reconstructions showed progressive radiolucent lines in one or two zones. Acetabular revision using impacted large morsellised bone chips (0.5 cm to 1 cm in diameter) and a cemented acetabular component remains a reliable technique for reconstruction, even when assessed at more than 20 years after surgery.
Inflammatory pseudotumours occasionally occur after metal-on-metal hip resurfacing and often lead to revision. Our aim was to determine the severity of this complication by assessing the outcome of revision in these circumstances and by comparing this with the outcome of other metal-on-metal hip resurfacing revisions as well as that of matched primary total hip replacements. We identified 53 hips which had undergone metal-on-metal hip resurfacing and required revision at a mean of 1.59 years (0.01 to 6.69) after operation. Of these, 16 were revised for pseudotumours, 21 for fracture and 16 for other reasons. These were matched by age, gender and diagnosis with 103 patients undergoing primary total hip replacement with the Exeter implant. At a mean follow-up of three years (0.8 to 7.2) the outcome of metal-on-metal hip resurfacing revision for pseudotumour was poor with a mean Oxford hip score of 20.9 ( The outcome of revision for pseudotumour is poor and consideration should be given to early revision to limit the extent of the soft-tissue destruction. The outcome of resurfacing revision for other causes is good.
We report the use of porous metal acetabular
revision shells in the treatment of contained bone loss. The outcomes of
53 patients with
Infection of a total hip replacement (THR) requires component removal and thorough local debridement. Usually, long-term antibiotic treatment in conjunction with a two-stage revision is required. This may take several months. One-stage revision using antibiotic-loaded cement has not gained widespread use, although the clinical and economic advantages are obvious. Allograft bone may be impregnated with high levels of antibiotics, and in revision of infected THR, act as a carrier providing a sustained high local concentration. We performed 37 one-stage revision of infected THRs, without the use of cement. There were three hips which required further revision because of recurrent infection, the remaining 34 hips (92%) stayed free from infection and stable at a mean follow-up of 4.4 years (2 to 8). No adverse effects were identified. Incorporation of bone graft was comparable with unimpregnated grafts. Antibiotic-impregnated allograft bone may enable reconstruction of bone stock, insertion of an uncemented implant and control of infection in a single operation in revision THR for infection.
In revision total hip replacement, bone loss can be managed by impacting porous bone chips. In order to guarantee sufficient mechanical strength, the bone chips have to be compacted. The aim of this study was to determine in an We found that the pneumatic method reached higher values of impaction hardness, contact stiffness and bulk density suggesting an increase in stability of the implant. No significant differences were found between the two different methods concerning the penetration resistance. The pneumatic method might reduce the risk of fracture
We developed a method of applying vibration to the impaction bone grafting process and assessed its effect on the mechanical properties of the impacted graft. Washed morsellised bovine femoral heads were impacted into shear test rings. A range of frequencies of vibration was tested, as measured using an accelerometer housed in a vibration chamber. Each shear test was repeated at four different normal loads to generate stress-strain curves. The Mohr-Coulomb failure envelope from which shear strength and interlocking values are derived was plotted for each test. The experiments were repeated with the addition of blood in order to replicate a saturated environment. Graft impacted with the addition of vibration at all frequencies showed improved shear strength when compared with impaction without vibration, with 60 Hz giving the largest effect. Under saturated conditions the addition of vibration was detrimental to the shear strength of the aggregate. The civil-engineering principles of particulate settlement and interlocking also apply to impaction bone grafting. Although previous studies have shown that vibration may be beneficial in impaction bone grafting on the femoral side, our study suggests that the same is not true in acetabular revision.
There have been considerable recent advances in the understanding and management of femoroacetabular impingement and associated labral and chondral pathology. We have developed a classification system for acetabular chondral lesions. In our system, we use the six acetabular zones previously described by Ilizaliturri et al. The cartilage is then graded on a scale of 0 to 4 as follows: grade 0, normal articular cartilage lesions; grade 1, softening or wave sign; grade 2, cleavage lesion; grade 3, delamination; and grade 4, exposed bone. The site of the lesion is further classed as A, B or C based on whether the lesion is less than one-third of the distance from the acetabular rim to the cotyloid fossa, one-third to two-thirds of the same distance and greater than two-thirds of the distance, respectively. In order to validate the classification system, six surgeons graded ten video recordings of hip arthroscopy. Our findings showed a high intra-observer reliability of the classification system with an intraclass correlation coefficient of 0.81 and a high interobserver reliability with an intraclass correlation coefficient of 0.88. We have developed a simple reproducible classification system for lesions of the acetabular cartilage, which it is hoped will allow standardised documentation to be made of damage to the articular cartilage, particularly that associated with femoroacetabular impingement.
We report the results of the revision of 123 acetabular components for aseptic loosening treated by impaction bone grafting using frozen, morsellised, irradiated femoral heads and cemented sockets. This is the first large series using this technique to be reported. A survivorship of 88% with revision as the end-point after a mean of five years is comparable with that of other series.
Between 1990 and 2000, 123 hips in 110 patients were reconstructed for aseptic loosening using impaction bone grafting with frozen, irradiated, morsellised femoral heads and cemented acetabular components. This series was reported previously at a mean follow-up of five years. We have extended this follow-up and now describe the outcome of 86 hips in 74 patients at a mean of ten years. There have been 19 revisions, comprising nine for infection, seven for aseptic loosening and three for dislocation. In surviving acetabular reconstructions, union of the graft had occurred in 64 of 67 hips (95.5%). Survival analysis for all indications at ten years was 83.3% (95% confidence interval (CI) 68 to 89) and 71.3% (95% CI 58 to 84) at 15 years. Acetabular reconstruction using irradiated allograft and a cemented acetabular component is an effective method of reconstruction, providing results in the medium- to long-term comparable with those of reported series where non-irradiated freshly-frozen bone was used.
The computed neck-shaft angle and the size of the femoral component were recorded in 100 consecutive hip resurfacings using imageless computer-navigation and compared with the angle measured before operation and with actual component implanted. The reliability of the registration was further analysed using ten cadaver femora. The mean absolute difference between the measured and navigated neck-shaft angle was 16.3° (0° to 52°). Navigation underestimated the measured neck-shaft angle in 38 patients and the correct implant size in 11. Registration of the cadaver femora tended to overestimate the correct implant size and provided a low level of repeatability in computing the neck-shaft angle. Prudent pre-operative planning is advisable for use in conjunction with imageless navigation since misleading information may be registered intraoperatively, which could lead to inappropriate sizing and positioning of the femoral component in hip resurfacing.
Failure of total hip arthroplasty with acetabular deficiency occurred in 55 patients (60 hips) and was treated with acetabular revision using morsellised allograft and a cemented metal-backed component. A total of 50 patients (55 hips) were available for clinical and radiological evaluation at a mean follow-up of 5.8 years (3 to 9.5). No hip required further revision of the acetabular component because of aseptic loosening. All the hips except one had complete incorporation of the allograft demonstrated on the radiographs. A complete radiolucent line of >
1 mm was noted in two hips post-operatively. A good to excellent result occurred in 50 hips (91%). With radiological evidence of aseptic loosening of the acetabular component as the end-point, the survivorship at a mean of 5.8 years after surgery was 96.4%. The use of impacted allograft chips in combination with a cemented metal-backed acetabular component and screw fixation can achieve good medium-term results in patients with acetabular bone deficiency.