We attempted to characterise the biological quality
and regenerative potential of chondrocytes in osteochondritis dissecans
(OCD). Dissected fragments from ten patients with OCD of the knee
(mean age 27.8 years (16 to 49)) were harvested at arthroscopy.
A sample of cartilage from the intercondylar notch was taken from
the same joint and from the notch of ten patients with a traumatic
cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes
were extracted and subsequently cultured. Collagen types 1, 2, and
10 mRNA were quantified by polymerase chain reaction. Compared with
the notch chondrocytes, cells from the dissecate expressed similar
levels of collagen types 1 and 2 mRNA. The level of collagen type
10 message was 50 times lower after cell culture, indicating a loss
of hypertrophic cells or genes. The high viability, retained capacity
to differentiate and metabolic activity of the extracted cells suggests
preservation of the intrinsic repair capability of these dissecates.
Molecular analysis indicated a phenotypic modulation of the expanded
dissecate chondrocytes towards a normal phenotype. Our findings
suggest that cartilage taken from the dissecate can be reasonably
used as a cell source for chondrocyte implantation procedures.
The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact normal knee and sequential unicompartmental and total knee replacement. Following medial mobile-bearing unicompartmental replacement in 11 knees, patellofemoral kinematics and forces did not change significantly from those in the intact knee across any measured parameter. In contrast, following posterior cruciate ligament retaining total knee replacement in eight knees, there were significant changes in patellofemoral movement and forces. The Oxford device appears to produce near-normal patellofemoral mechanics, which may partly explain the low incidence of complications with the extensor mechanism associated with clinical use.
Aims. The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Methods. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in
Aims. The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in
Aims. Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in
Aims. One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in
Aims. Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in
Aims. The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in
Aims. The aims of this study were to compare the mean duration of antibiotic release and the mean zone of inhibition between vancomycin-loaded porous tantalum cylinders and antibiotic-loaded bone cement at intervals, and to evaluate potential intrinsic antimicrobial properties of tantalum in an in
This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.Aims
Methods
Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))? Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined.Aims
Methods
The aim of this study was to compare the migration of the femoral component, five years postoperatively, between patients with a highly cross-linked polyethylene (HXLPE) insert and those with a conventional polyethylene (PE) insert in an uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary aims included clinical outcomes and patient-reported outcome measures (PROMs). We have previously reported the migration and outcome of the tibial components in these patients. A double-blinded randomized controlled trial was conducted including 96 TKAs. The migration of the femoral component was measured with radiostereometry (RSA) at three and six months and one, two, and five years postoperatively. PROMs were collected preoperatively and at all periods of follow-up.Aims
Methods
Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.Aims
Methods
The primary objective of this study was to compare the five-year tibial component migration and wear between highly crosslinked polyethylene (HXLPE) inserts and conventional polyethylene (PE) inserts of the uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary objectives included clinical outcomes and patient-reported outcome measures (PROMs). A double-blinded, randomized study was conducted including 96 TKAs. Tibial component migration and insert wear were measured with radiostereometric analysis (RSA) at three, six, 12, 24, and 60 months postoperatively. PROMS were collected preoperatively and at all follow-up timepoints.Aims
Methods
Knee osteoarthritis (OA) is characterized by a chronic inflammatory process involving multiple cytokine pathways, leading to articular cartilage degeneration. Intra-articular therapies using pharmaceutical or autologous anti-inflammatory factors offer potential non-surgical treatment options. Autologous protein solution (APS) is one such product that uses the patient’s blood to produce a concentrate of cells and anti-inflammatory cytokines. This study evaluated the effect of a specific APS intra-articular injection (nSTRIDE) on patient-reported outcome measures compared to saline in moderate knee OA. A parallel, double-blinded, placebo-controlled randomized controlled trial was conducted, where patients with unilateral moderate knee OA (Kellgren-Lawrence grade 2 or 3) received either nSTRIDE or saline (placebo) injection to their symptomatic knee. The primary outcome was the difference in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) total score at 12 months post-intervention. Secondary outcomes included WOMAC component scores, Knee injury and Osteoarthritis Outcome Score (KOOS), and visual analogue scale (VAS) scores at all follow-up timepoints (three, six, and 12 months).Aims
Methods
This systematic review and meta-analysis aimed to compare the influence of patellar resurfacing following cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) on the incidence of anterior knee pain, knee-specific patient-reported outcome measures, complication rates, and reoperation rates. A systematic review of MEDLINE, PubMed, and Google Scholar was performed to identify randomized controlled trials (RCTs) according to search criteria. Search terms used included: arthroplasty, replacement, knee (Mesh), TKA, prosthesis, patella, patellar resurfacing, and patellar retaining. RCTs that compared patellar resurfacing versus unresurfaced in primary TKA were included for further analysis. Studies were evaluated using the Scottish Intercollegiate Guidelines Network assessment tool for quality and minimization of bias. Data were synthesized and meta-analysis performed.Aims
Methods
Total knee arthroplasty (TKA) is a common and safe orthopaedic procedure. Zimmer Biomet's NexGen is the second most popular brand of implant used in the UK. The primary cause of revision after the first year is aseptic loosening. We present our experience of using this implant, with significant concerns around its performance with regards early aseptic loosening of the tibial component. A retrospective, single-surgeon review was carried out of all of the NexGen Legacy Posterior Stabilized (LPS) TKAs performed in this institute. The specific model used for the index procedures was the NexGen Complete Knee System (Legacy Knee-Posterior Stabilized LPS-Flex Articular Surface, LPS-Flex Femoral Component Option, and Stemmed Nonaugmentable Tibial Component Option).Aims
Methods
The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.Aims
Methods
Platelet-rich plasma (PRP) intra-articular injections may provide a simple and minimally invasive treatment for early-stage knee osteoarthritis (OA). This has led to an increase in its adoption as a treatment for knee OA, although there is uncertainty about its efficacy and benefit. We hypothesized that patients with early-stage symptomatic knee OA who receive multiple PRP injections will have better clinical outcomes than those receiving single PRP or placebo injections. A double-blinded, randomized placebo-controlled trial was performed with three groups receiving either placebo injections (Normal Saline), one PRP injection followed by two placebo injections, or three PRP injections. Each injection was given one week apart. Outcomes were prospectively collected prior to intervention and then at six weeks, three months, six months, and 12 months post-intervention. Primary outcome measures were Knee Injury and Osteoarthritis Outcome Score (KOOS) and EuroQol five-dimension five-level index (EQ-5D-5L). Secondary outcomes included visual analogue scale for pain and patient subjective assessment of the injections.Aims
Methods
Aims. We sought to establish whether an oxidised zirconium (OxZr) femoral
component causes less loss of polyethylene volume than a cobalt
alloy (CoCr) femoral component in total knee arthroplasty. Materials and Methods. A total of 20 retrieved tibial inserts that had articulated with
OxZr components were matched with 20 inserts from CoCr articulations
for patient age, body mass index, length of implantation, and revision
diagnosis. Changes in dimensions of the articular surfaces were compared
with those of pristine inserts using laser scanning. The differences
in volume between the retrieved and pristine surfaces of the two
groups were calculated and compared. Results. The loss of polyethylene volume was 122 mm. 3. (standard
deviation (. sd. ) 87) in the OxZr group and 170 mm. 3. (. sd. 96)
in the CoCr group (p = 0.033). The volume loss in the OxZr group was
also lower in the medial (72 mm. 3 . (. sd. 67) versus 92
mm. 3 . (. sd. 60); p = 0.096) and lateral (49 mm. 3 . (. sd. 36) versus 79
mm. 3 . (. sd. 61); p = 0.096) compartments separately,
but these differences were not significant. Conclusion. Our results corroborate earlier findings from in
Thresholds of acceptable early migration of the components in total knee arthroplasty (TKA) have traditionally ignored the effects of patient and implant factors that may influence migration. The aim of this study was to determine which of these factors are associated with overall longitudinal migration of well-fixed tibial components following TKA. Radiostereometric analysis (RSA) data over a two-year period were available for 419 successful primary TKAs (267 cemented and 152 uncemented in 257 female and 162 male patients). Longitudinal analysis of data using marginal models was performed to examine the associations of patient factors (age, sex, BMI, smoking status) and implant factors (cemented or uncemented, the size of the implant) with maximum total point motion (MTPM) migration. Analyses were also performed on subgroups based on sex and fixation.Aims
Methods
This study compared the cobalt and chromium serum ion concentration of patients treated with two different metal-on-metal (MoM) hinged total knee arthroplasty (TKA) systems, as well as a titanium nitride (TiN)-coated variant. A total of 63 patients (65 implants) were treated using either a MoM-coated (n = 29) or TiN-coated (n = 7) hinged TKA (GenuX mobile bearing, MUTARS; Implantcast, Germany) versus the BPKS (Brehm, Germany) hinged TKA (n = 27), in which the weight placed on the MoM hinge is diffused through a polyethylene (PE) inlay, reducing the direct load on the MoM hinge. Serum cobalt and chromium ion concentrations were assessed after minimum follow-up of 12 months, as well as functional outcome and quality of life.Aims
Methods
Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs. In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.Aims
Methods
It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance.Aims
Methods
Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity. Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion.Aims
Methods
Objectives. We performed in
Infection complicating primary total knee arthroplasty (TKA) is a common reason for revision surgery, hospital readmission, patient morbidity, and mortality. Increasing incidence of methicillin-resistant A retrospective review of 1,060 patients who underwent TKA between May 2016 to July 2020 was performed. There were 572 patients in the IV group and 488 in the IO group, with minimal 30 days of follow-up. Patients were followed up at regularly scheduled intervals (two, six, and 12 weeks). No differences between groups for age, sex, BMI, or baseline comorbidities existed. The IV group received an IV dose of 15 mg/kg vancomycin given over an hour preceding skin incision. The IO group received a 500 mg dose of vancomycin mixed in 150 ml of normal saline, injected into proximal tibia after tourniquet inflation, before skin incision. All patients received an additional dose of first generation cephalosporin. Evaluation included preoperative and postoperative serum creatinine values, tourniquet time, and adverse reactions attributable to vancomycin.Aims
Methods
Two-stage revision surgery for infected total knee replacement offers the highest rate of success for the elimination of infection. The use of articulating antibiotic-laden cement spacers during the first stage to eradicate infection also allows protection of the soft tissues against excessive scarring and stiffness. We have investigated the effect of cyclical loading of cement spacers on the elution of antibiotics. Femoral and tibial spacers containing vancomycin at a constant concentration and tobramycin of varying concentrations were studied in
Objective patellar instability has been correlated with dysplasia of the femoral trochlea. This in
Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm2, 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)’ viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Aims
Methods
The anterior cruciate ligament (ACL) is known to have a poor wound healing capacity, whereas other ligaments outside of the knee joint capsule such as the medial collateral ligament (MCL) apparently heal more easily. Plasmin has been identified as a major component in the synovial fluid that varies among patients. The aim of this study was to test whether plasmin, a component of synovial fluid, could be a main factor responsible for the poor wound healing capacity of the ACL. The effects of increasing concentrations of plasmin (0, 0.1, 1, 10, and 50 µg/ml) onto the wound closing speed (WCS) of primary ACL-derived ligamentocytes (ACL-LCs) were tested using wound scratch assay and time-lapse phase-contrast microscopy. Additionally, relative expression changes (quantitative PCR (qPCR)) of major LC-relevant genes and catabolic genes were investigated. The positive controls were 10% fetal calf serum (FCS) and platelet-derived growth factor (PDGF).Aims
Methods
The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design. A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee.Aims
Methods
Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level. A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).Aims
Methods
A retrospective study was conducted to measure short-term Nonweightbearing supine RSA exams were performed postoperatively and at six, 12, and 24 months. Weightbearing standing RSA exams were performed on select patients at 12 and 24 months. Wear was measured both linearly (joint space) and volumetrically (digital model overlap) at each available follow-up. Precision of both methods was assessed by comparing double RSA exams. Patient age, sex, body mass index, and Oxford Knee Scores were analyzed for any association with PE wear.Aims
Patients and Methods
The object of this study was to develop a method to assess the accuracy of an image-free total knee replacement navigation system in legs with normal or abnormal mechanical axes. A phantom leg was constructed with simulated hip and knee joints and provided a means to locate the centre of the ankle joint. Additional joints located at the midshaft of the tibia and femur allowed deformation in the flexion/extension, varus/valgus and rotational planes. Using a digital caliper unit to measure the coordinates precisely, a software program was developed to convert these local coordinates into a determination of actual leg alignment. At specific points in the procedure, information was compared between the digital caliper measurements and the image-free navigation system. Repeated serial measurements were undertaken. In the setting of normal alignment the mean error of the system was within 0.5°. In the setting of abnormal plane alignment in both the femur and the tibia, the error was within 1°. This is the first study designed to assess the accuracy of a clinically-validated navigation system. It demonstrates in
The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions.Objectives
Methods
We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement.Aims
Methods
A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component.Aims
Methods
Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions.Objectives
Methods
Objectives. Orthopaedic surgeons use stems in revision knee surgery to obtain
stability when metaphyseal bone is missing. No consensus exists
regarding stem size or method of fixation. This in
The use of vitamin E-infused highly crosslinked polyethylene (HXLPE) in total knee prostheses is controversial. In this paper we have compared the clinical and radiological results between conventional polyethylene and vitamin E-infused HXLPE inserts in total knee arthroplasty (TKA). The study included 200 knees (175 patients) that underwent TKA using the same total knee prostheses. In all, 100 knees (77 patients) had a vitamin E-infused HXLPE insert (study group) and 100 knees (98 patients) had a conventional polyethylene insert (control group). There were no significant differences in age, sex, diagnosis, preoperative knee range of movement (ROM), and preoperative Knee Society Score (KSS) between the two groups. Clinical and radiological results were evaluated at two years postoperatively.Aims
Patients and Methods
Altered alignment and biomechanics are thought to contribute to the progression of osteoarthritis (OA) in the native compartments after medial unicompartmental knee arthroplasty (UKA). The aim of this study was to evaluate the bone activity and remodelling in the lateral tibiofemoral and patellofemoral compartment after medial mobile-bearing UKA. In total, 24 patients (nine female, 15 male) with 25 medial Oxford UKAs (13 left, 12 right) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively and at one and two years postoperatively, along with standard radiographs and clinical outcome scores. The mean patient age was 62 years (40 to 78) and the mean body mass index (BMI) was 29.7 kg/m2 (23.6 to 42.2). Mean osteoblastic activity was evaluated using a tracer localization scheme with volumes of interest (VOIs). Normalized mean tracer values were calculated as the ratio between the mean tracer activity in a VOI and background activity in the femoral diaphysis.Aims
Patients and Methods
Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs.Objectives
Methods
Loosening of the tibial component after total knee arthroplasty (TKA) is a common indication for revision. Increasing the strength of the initial tibial implant/cement interface is desirable. There is little information about the surgical techniques that lead to the highest strength. We investigated the effects of eight variables on the strength of the initial tibial baseplate/cement interface. A total of 48 tibial trays were cemented into acrylic holders using cement from two manufacturers, at three different times (early, normal, and late) using two techniques: cementing the tibial plateau or the plateau and the keel; and involving two conditions of contamination with marrow fat (at the metal/cement and cement/cement interfaces). Push-out tests were performed with load continuously recorded.Aims
Materials and Methods
The Bisurface knee prosthesis (BP) has a posterior stabilising cam (ball-and-socket joint) in the mid-posterior region of the femorotibial joint in an attempt to improve the range of movement. Based on an in
The aim of this study was to evaluate the surface damage, the density of crosslinking, and oxidation in retrieved antioxidant-stabilized highly crosslinked polyethylene (A-XLPE) tibial inserts from total knee arthroplasty (TKA), and to compare the results with a matched cohort of standard remelted highly crosslinked polyethylene (XLPE) inserts. A total of 19 A-XLPE tibial inserts were retrieved during revision TKA and matched to 18 retrieved XLPE inserts according to the demographics of the patients, with a mean length of implantation of 15 months (1 to 42). The percentage areas of PE damage on the articular surfaces and the modes of damage were measured. The density of crosslinking of the PE and oxidation were measured at loaded and unloaded regions on these surfaces.Aims
Materials and Methods
Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.Aim
Materials and Methods
Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation. A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry.Objectives
Methods
There is insufficient evidence to recommend the use of alternative polyethylene bearings in modular, fixed-bearing total knee arthroplasty (TKA). The purpose of this study was to compare standard polyethylene (SP) and highly crosslinked polyethylene (XLP) tibial liners in posterior-stabilized TKA, with osteolysis as the primary outcome and clinical results and the rate of re-operation as the secondary outcomes. This is a single-surgeon, prospective randomized study involving one design of modular posterior-stabilized TKA. An analysis of 122 TKAs with an SP compression moulded liner and 123 with an XLP liner was performed, with a mean follow-up of six years (2 to 11). Patients were evaluated clinically using the Knee Society score, Lower Extremity Activity Score (LEAS), and the presence of an effusion, and standard radiographs were assessed for radiolucent lines and osteolytic lesions.Aims
Patients and Methods
The treatment of patients with allergies to metal in total joint arthroplasty is an ongoing debate. Possibilities include the use of hypoallergenic prostheses, as well as the use of standard cobalt-chromium (CoCr) alloy. This non-designer study was performed to evaluate the clinical outcome and survival rates of unicondylar knee arthroplasty (UKA) using a standard CoCr alloy in patients reporting signs of a hypersensitivity to metal. A consecutive series of patients suitable for UKA were screened for symptoms of metal hypersensitivity by use of a questionnaire. A total of 82 patients out of 1737 patients suitable for medial UKA reporting cutaneous metal hypersensitivity to cobalt, chromium, or nickel were included into this study and prospectively evaluated to determine the functional outcome, possible signs of hypersensitivity, and short-term survivorship at a minimum follow-up of 1.5 years.Aims
Patients and Methods
Aims
Patients and Methods
This study compares the PFC total knee arthroplasty (TKA) system in a prospective randomized control trial (RCT) of the mobile-bearing rotating-platform (RP) TKA against the fixed-bearing (FB) TKA. This is the largest RCT with the longest follow-up where cruciate-retaining PFC total knee arthroplasties are compared in a non-bilateral TKA study. A total of 167 patients (190 knees with 23 bilateral cases), were recruited prospectively and randomly assigned, with 91 knees receiving the RP and 99 knees receiving FB. The mean age was 65.5 years (48 to 82), the mean body mass index (BMI) was 29.7 kg/m2 (20 to 52) and 73 patients were female. The Knee Society Score (KSS), Knee Society Functional Score (KSFS), Oxford Knee Score (OKS), Western Ontario and McMaster Universities Arthritis Index (WOMAC), and 12-Item Short-Form Health Survey Physical and Mental Component Scores (SF-12 PCS, SF-12 MCS) were gathered and recorded preoperatively, at five-years’ follow-up, and at ten years’ follow-up. Additionally, Knee Injury and Osteoarthritis Outcome Scores (KOOS) were collected at five- and ten-year follow-ups. The prevalence of radiolucent lines (RL) on radiographs and implant survival were recorded at five- and ten-year follow-ups.Aims
Patients and Methods
The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.Objectives
Methods
Our aim was to perform a meta-analysis of the outcomes of revision
anterior cruciate ligament (ACL) reconstruction, comparing the use
of different types of graft. A search was performed of Medline and Pubmed using the terms
“Anterior Cruciate Ligament” and “ACL” combined with “revision”,
“re-operation” and “failure”. Only studies that reported the outcome
at a minimum follow-up of two years were included. Two authors reviewed
the papers, and outcomes were subdivided into autograft and allograft. Autograft
was subdivided into hamstring (HS) and bone-patellar tendon-bone
(BPTB). Subjective and objective outcome measures were analysed
and odds ratios with confidence intervals were calculated.Aims
Materials and Methods
The aims of this study were to determine the proportion of patients
with outlier varus or valgus alignment in kinematically aligned
total knee arthroplasty (TKA), whether those with outlier varus
or valgus alignment have higher forces in the medial or lateral
compartments of the knee than those with in-range alignment and
whether measurements of the alignment of the limb, knee and components
predict compartment forces. The intra-operative forces in the medial and lateral compartments
were measured with an instrumented tibial insert in 67 patients
who underwent a kinematically aligned TKA during passive movement.
The mean of the forces at full extension, 45° and 90° of flexion
determined the force in the medial and lateral compartments. Measurements
of the alignment of the limb and the components included the hip-knee-ankle
(HKA) angle, proximal medial tibial angle (PMTA), and distal lateral
femoral angle (DLFA). Measurements of the alignment of the knee
and the components included the tibiofemoral angle (TFA), tibial
component angle (TCA) and femoral component angle (FCA). Alignment was
measured on post-operative, non-weight-bearing anteroposterior (AP)
scanograms and categorised as varus or valgus outlier or in-range
in relation to mechanically aligned criteria.Aims
Patients and Methods
Advances in polyethylene (PE) in total hip arthroplasty
have led to interest and increased use of highly crosslinked PE
(HXLPE) in total knee arthroplasty (TKA). Biomechanical data suggest
improved wear characteristics for HXLPE inserts over conventional
PE in TKA. Short-term results from registry data and few clinical
trials are promising. Our aim is to present a review of the history
of HXLPEs, the use of HXLPE inserts in TKA, concerns regarding potential mechanical
complications, and a thorough review of the available biomechanical
and clinical data. Cite this article:
This Although many agents commonly injected into joints are chondrotoxic,
in this Cite this article:
The aim of this study was to assess the effect
of injecting genetically engineered chondrocytes expressing transforming
growth factor beta 1 (TGF-β1) into the knees of patients with osteoarthritis.
We assessed the resultant function, pain and quality of life. A total of 54 patients (20 men, 34 women) who had a mean age
of 58 years (50 to 66) were blinded and randomised (1:1) to receive
a single injection of the active treatment or a placebo. We assessed
post-treatment function, pain severity, physical function, quality
of life and the incidence of treatment-associated adverse events. Patients
were followed at four, 12 and 24 weeks after injection. At final follow-up the treatment group had a significantly greater
improvement in the mean International Knee Documentation Committee
score than the placebo group (16 points; -18 to 49, This technique may result in improved clinical outcomes, with
the aim of slowing the degenerative process, leading to improvements
in pain and function. However, imaging and direct observational
studies are needed to verify cartilage regeneration. Nevertheless,
this study provided a sufficient basis to proceed to further clinical testing. Cite this article:
The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions. A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered.Objectives
Methods
Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions.Objectives
Materials and Methods
The purpose of this study was to report the experience of dynamic
intraligamentary stabilisation (DIS) using the Ligamys device for
the treatment of acute ruptures of the anterior cruciate ligament
(ACL). Between March 2011 and April 2012, 50 patients (34 men and 16
women) with an acute rupture of the ACL underwent primary repair
using this device. The mean age of the patients was 30 years (18
to 50). Patients were evaluated for laxity, stability, range of
movement (ROM), Tegner, Lysholm, International Knee Documentation Committee
(IKDC) and visual analogue scale (VAS) scores over a follow-up period
of two years.Aims
Patients and Methods
Injury to the anterior cruciate ligament (ACL)
is one of the most devastating and frequent injuries of the knee. Surgical
reconstruction is the current standard of care for treatment of
ACL injuries in active patients. The widespread adoption of ACL
reconstruction over primary repair was based on early perception
of the limited healing capacity of the ACL. Although the majority
of ACL reconstruction surgeries successfully restore gross joint stability,
post-traumatic osteoarthritis is commonplace following these injuries,
even with ACL reconstruction. The development of new techniques
to limit the long-term clinical sequelae associated with ACL reconstruction
has been the main focus of research over the past decades. The improved
knowledge of healing, along with recent advances in tissue engineering
and regenerative medicine, has resulted in the discovery of novel
biologically augmented ACL-repair techniques that have satisfactory
outcomes in preclinical studies. This instructional review provides
a summary of the latest advances made in ACL repair. Cite this article:
Our objective in this article is to test the hypothesis that
type 2 diabetes mellitus (T2DM) is a factor in the onset and progression
of osteoarthritis, and to characterise the quality of the articular
cartilage in an appropriate rat model. T2DM rats were obtained from the UC Davis group and compared
with control Lewis rats. The diabetic rats were sacrificed at ages
from six to 12 months, while control rats were sacrificed at six
months only. Osteoarthritis severity was determined via histology
in four knee quadrants using the OARSI scoring guide. Immunohistochemical
staining was also performed as a secondary form of osteoarthritic
analysis.Objectives
Methods
Oxidised zirconium was introduced as a material for femoral components
in total knee arthroplasty (TKA) as an attempt to reduce polyethylene
wear. However, the long-term survival of this component is not known. We performed a retrospective review of a prospectively collected
database to assess the ten year survival and clinical and radiological
outcomes of an oxidised zirconium total knee arthroplasty with the
Genesis II prosthesis. The Western Ontario and McMaster Universities Osteoarthritis
Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS)
and a patient satisfaction scale were used to assess outcome.Aims
Methods
We investigated whether strontium-enriched calcium
phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results
in accelerated healing within the bone tunnel in reconstruction
of the anterior cruciate ligament (ACL). A total of 30 single-bundle
ACL reconstructions using tendo Achillis allograft were performed
in 15 rabbits. The graft on the tested limb was treated with Sr-CPC,
whereas that on the contralateral limb was untreated and served
as a control. At timepoints three, six, nine, 12 and 24 weeks after
surgery, three animals were killed for histological examination.
At six weeks, the graft–bone interface in the control group was
filled in with fibrovascular tissue. However, the gap in the Sr-CPC
group had already been completely filled in with new bone, and there
was evidence of the early formation of Sharpey fibres. At 24 weeks,
remodelling into a normal ACL–bone-like insertion was found in the
Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft
leads to accelerated graft healing within the bone tunnel in a rabbit
model of ACL reconstruction using Achilles tendon allograft. Cite this article:
The treatment of osteochondral lesions is of
great interest to orthopaedic surgeons because most lesions do not heal
spontaneously. We present the short-term clinical outcome and MRI
findings of a cell-free scaffold used for the treatment of these
lesions in the knee. A total of 38 patients were prospectively evaluated
clinically for two years following treatment with an osteochondral
nanostructured biomimetic scaffold. There were 23 men and 15 women; the
mean age of the patients was 30.5 years (15 to 64). Clinical outcome
was assessed using the Knee Injury and Osteoarthritis Outcome Score
(KOOS), the Tegner activity scale and a Visual Analgue scale for
pain. MRI data were analysed based on the Magnetic Resonance Observation
of Cartilage Repair Tissue (MOCART) scoring system at three, 12
and 24 months post-operatively. There was a continuous significant
clinical improvement after surgery. In two patients, the scaffold
treatment failed (5.3%) There was a statistically significant improvement
in the MOCART precentage scores. The repair tissue filled most of
the defect sufficiently. We found subchondral laminar changes in all
patients. Intralesional osteophytes were found in two patients (5.3%).
We conclude that this one-step scaffold-based technique can be used
for osteochondral repair. The surgical technique is straightforward,
and the clinical results are promising. The MRI aspects of the repair
tissue continue to evolve during the first two years after surgery.
However, the subchondral laminar and bone changes are a concern. Cite this article:
We evaluated the impact of pre-coating the tibial
component with polymethylmethacrylate (PMMA) on implant survival
in a cohort of 16 548 primary NexGen total knee replacements (TKRs)
in 14 113 patients. In 13 835 TKRs a pre-coated tray was used while
in 2713 TKRs the non-pre-coated version of the same tray was used.
All the TKRs were performed between 2001 and 2009 and were cemented.
TKRs implanted with a pre-coated tibial component had a lower cumulative
survival than those with a non-pre-coated tibial component (p =
0.01). After adjusting for diagnosis, age, gender, body mass index,
American Society of Anesthesiologists grade, femoral coupling design, surgeon
volume and hospital volume, pre-coating was an independent risk
factor for all-cause aseptic revision (hazard ratio 2.75, p = 0.006).
Revision for aseptic loosening was uncommon for both pre-coated
and non-pre-coated trays (rates of 0.12% and 0%, respectively).
Pre-coating with PMMA does not appear to be protective of revision
for this tibial tray design at short-term follow-up. Cite this article:
The optimum cementing technique for the tibial
component in cemented primary total knee replacement (TKR) remains
controversial. The technique of cementing, the volume of cement
and the penetration are largely dependent on the operator, and hence
large variations can occur. Clinical, experimental and computational
studies have been performed, with conflicting results. Early implant
migration is an indication of loosening. Aseptic loosening is the
most common cause of failure in primary TKR and is the product of
several factors. Sufficient penetration of cement has been shown
to increase implant stability. This review discusses the relevant literature regarding all aspects
of the cementing of the tibial component at primary TKR. Cite this article:
Wear of polyethylene inserts plays an important role in failure
of total knee replacement and can be monitored Before revision, the minimum joint space width values and their
locations on the insert were measured in 15 fully weight-bearing
radiographs. These measurements were compared with the actual minimum
thickness values and locations of the retrieved tibial inserts after
revision. Introduction
Method
Cartilage repair in terms of replacement, or
regeneration of damaged or diseased articular cartilage with functional tissue,
is the ‘holy grail’ of joint surgery. A wide spectrum of strategies
for cartilage repair currently exists and several of these techniques
have been reported to be associated with successful clinical outcomes
for appropriately selected indications. However, based on respective
advantages, disadvantages, and limitations, no single strategy, or
even combination of strategies, provides surgeons with viable options
for attaining successful long-term outcomes in the majority of patients.
As such, development of novel techniques and optimisation of current techniques
need to be, and are, the focus of a great deal of research from
the basic science level to clinical trials. Translational research
that bridges scientific discoveries to clinical application involves
the use of animal models in order to assess safety and efficacy
for regulatory approval for human use. This review article provides
an overview of animal models for cartilage repair. Cite this article:
We examined whether enamel matrix derivative
(EMD) could improve healing of the tendon–bone interface following
reconstruction of the anterior cruciate ligament (ACL) using a hamstring
tendon in a rat model. ACL reconstruction was performed in both
knees of 30 Sprague-Dawley rats using the flexor digitorum tendon.
The effect of commercially available EMD (EMDOGAIN), a preparation
of matrix proteins from developing porcine teeth, was evaluated.
In the left knee joint the space around the tendon–bone interface
was filled with 40 µl of EMD mixed with propylene glycol alginate
(PGA). In the right knee joint PGA alone was used. The ligament
reconstructions were evaluated histologically and biomechanically
at four, eight and 12 weeks (n = 5 at each time point). At eight weeks,
EMD had induced a significant increase in collagen fibres connecting
to bone at the tendon–bone interface (p = 0.047), whereas the control
group had few fibres and the tendon–bone interface was composed
of cellular and vascular fibrous tissues. At both eight and 12 weeks,
the mean load to failure in the treated specimens was higher than
in the controls (p = 0.009). EMD improved histological tendon–bone
healing at eight weeks and biomechanical healing at both eight and
12 weeks. EMD might therefore have a human application to enhance
tendon–bone repair in ACL reconstruction.
Ensuring correct rotation of the femoral component
is a challenging aspect of patellofemoral replacement surgery. Rotation
equal to the epicondylar axis or marginally more external rotation
is acceptable. Internal rotation is associated with poor outcomes.
This paper comprises two studies evaluating the use of the medial
malleolus as a landmark to guide rotation. We used 100 lower-leg anteroposterior radiographs to evaluate
the reliability of the medial malleolus as a landmark. Assessment
was made of the angle between the tibial shaft and a line from the
intramedullary rod entry site to the medial malleolus. The femoral
cut was made in ten cadaver knees using the inferior tip of the
medial malleolus as a landmark for rotation. Rotation of the cut
relative to the anatomical epicondylar axis was assessed using CT.
The study of radiographs found the position of the medial malleolus
relative to the tibial axis is consistent. Using the inferior tip
of the medial malleolus in the cadaver study produced a mean external
rotation of 1.6° (0.1° to 3.7°) from the anatomical epicondylar
axis. Using the inferior tip of the medial malleolus to guide the
femoral cutting jig avoids internal rotation and introduces an acceptable
amount of external rotation of the femoral component.
Hypermobility is an acknowledged risk factor
for patellar instability. In this case control study the influence
of hypermobility on clinical outcome following medial patellofemoral
ligament (MPFL) reconstruction for patellar instability was studied. A total of 25 patients with hypermobility as determined by the
Beighton criteria were assessed and compared with a control group
of 50 patients who were matched for age, gender, indication for
surgery and degree of trochlear dysplasia. The patients with hypermobility
had a Beighton Score of ≥ 6; the control patients had a score of <
4. All patients underwent MPFL reconstruction performed using semitendinosus
autograft and a standardised arthroscopically controlled technique.
The mean age of the patients was 25 years (17 to 49) and the mean
follow-up was 15 months (6 to 30). Patients with hypermobility had a significant improvement in
function following surgery, with reasonable rates of satisfaction,
perceived improvement, willingness to repeat and likelihood of recommendation.
Functional improvements were significantly less than in control
patients (p <
0.01). Joint hypermobility is not a contraindication to MPFL reconstruction
although caution is recommended in managing the expectations of
patients with hypermobility before consideration of surgery.
We analysed whether a high body mass index (BMI)
had a deleterious effect on outcome following autologous chondrocyte
implantation (ACI) or matrix-carried autologous chondrocyte implantation
(MACI) for the treatment of full-thickness chondral defects of the
knee from a subset of patients enrolled in the ACI vs MACI trial
at The Royal National Orthopaedic Hospital. The mean Modified Cincinnati scores (MCS) were significantly
higher (p <
0.001) post-operatively in patients who had an ideal
body weight (n = 53; 20 to 24.9 kg/m2) than in overweight
(n = 63; 25 to 30 kg/m2) and obese patients (n = 22;
>
30 kg/m2). At a follow-up of two years, obese patients
demonstrated no sustained improvement in the MCS. Patients with
an ideal weight experienced significant improvements as early as
six months after surgery (p = 0.007). In total, 82% of patients
(31 of 38) in the ideal group had a good or excellent result, compared
with 49% (22 of 45) of the overweight and 5.5% (one of 18) in the
obese group (p <
0.001). There was a significant negative relationship between
BMI and the MCS 24 months after surgery (r = -0.4, p = 0.001). This study demonstrates that obese patients have worse knee function
before surgery and experience no sustained benefit from ACI or MACI
at two years after surgery. There was a correlation between increasing
BMI and a lower MCS according to a linear regression analysis. On
the basis of our findings patient selection can be more appropriately
targeted.
Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray. We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement. Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.
Matrix-assisted autologous chondrocyte transplantation (MACT)
has been developed and applied in the clinical practice in the last
decade to overcome most of the disadvantages of the first generation
procedures. The purpose of this systematic review is to document
and analyse the available literature on the results of MACT in the
treatment of chondral and osteochondral lesions of the knee. All studies published in English addressing MACT procedures were
identified, including those that fulfilled the following criteria:
1) level I-IV evidence, 2) measures of functional or clinical outcome,
3) outcome related to cartilage lesions of the knee cartilage.Objectives
Methods
Autologous chondrocyte implantation is an option in the treatment of full-thickness chondral or osteochondral injuries which are symptomatic. The goal of surgery and rehabilitation is the replacement of damaged cartilage with hyaline or hyaline-like cartilage, producing improved levels of function and preventing early osteoarthritis. The intermediate results have been promising in terms of functional and clinical improvement. Our aim was to explore the hypothesis that the histological quality of the repair tissue formed after autologous chondrocyte implantation improved with increasing time after implantation. In all, 248 patients who had undergone autologous chondrocyte implantation had biopsies taken of the repair tissue which then underwent histological grading. Statistical analysis suggested that with doubling of the time after implantation the likelihood of a favourable histological outcome was increased by more than fourfold (p <
0.001).
This was a retrospective analysis of the medium-
to long-term results of 46 TC3 Sigma revision total knee replacements
using long uncemented stems in press-fit mode. Clinical and radiological analysis took place pre-operatively,
at two years post-operatively, and at a mean follow-up of 8.5 years
(4 to 12). The mean pre-operative International Knee Society (IKS)
clinical score was 42 points (0 to 74), improving to 83.7 (52 to
100) by the final follow-up. The mean IKS score for function improved
from 34.3 points (0 to 80) to 64.2 (15 to 100) at the final follow-up.
At the final follow-up 30 knees (65.2%) had an excellent result, seven
(15.2%) a good result, one (2.2%) a medium and eight (17.4%) a poor
result. There were two failures, one with anteroposterior instability
and one with aseptic loosening. The TC3 revision knee system, when used with press-fit for long
intramedullary stems and cemented femoral and tibial components,
in both septic and aseptic revisions, results in a satisfactory
clinical and radiological outcome, and has a good medium- to long-term
survival rate.
This review summarises the opinions and conclusions
reached from a symposium on infected total knee replacement (TKR)
held at the British Association of Surgery of the Knee (BASK) annual
meeting in 2011. The National Joint Registry for England and Wales
reported 5082 revision TKRs in 2010, of which 1157 (23%) were caused
by infection. The diagnosis of infection beyond the acute post-operative
stage relies on the identification of the causative organism by
aspiration and analysis of material obtained at arthroscopy. Ideal
treatment then involves a two-stage surgical procedure with extensive
debridement and washout, followed by antibiotics. An articulating
or non-articulating drug-eluting cement spacer is used prior to
implantation of the revision prosthesis, guided by the serum level
of inflammatory markers. The use of a single-stage revision is gaining popularity
and we would advocate its use in certain patients where the causative
organism is known, no sinuses are present, the patient is not immunocompromised,
and there is no radiological evidence of component loosening or
osteitis. It is our opinion that single-stage revision produces high-quality
reproducible results and will soon achieve the same widespread acceptance
as it does in infected hip arthroplasty.
In posterior stabilised total knee replacement
(TKR) a larger femoral component is sometimes selected to manage the
increased flexion gap caused by resection of the posterior cruciate
ligament. However, concerns remain regarding the adverse effect
of the increased anteroposterior dimensions of the femoral component
on the patellofemoral (PF) joint. Meanwhile, the gender-specific
femoral component has a narrower and thinner anterior flange and
is expected to reduce the PF contact force. PF contact forces were
measured at 90°, 120°, 130° and 140° of flexion using the NexGen
Legacy Posterior Stabilized (LPS)-Flex Fixed Bearing Knee system
using Standard, Upsized and Gender femoral components during TKR.
Increasing the size of the femoral component significantly increased
mean PF forces at 120°, 130° and 140° of flexion (p = 0.005, p <
0.001 and p <
0.001, respectively). No difference was found in
contact force between the Gender and the Standard components. Among
the patients who had overhang of the Standard component, mean contact
forces with the Gender component were slightly lower than those
of the Standard component, but no statistical difference was found
at 90°, 120°, 130° or 140° of flexion (p = 0.689, 0.615, 0.253 and
0.248, respectively). Upsized femoral components would increase PF forces in deep knee
flexion. Gender-specific implants would not reduce PF forces.
This prospective study used magnetic resonance imaging to record sagittal plane tibiofemoral kinematics before and after anterior cruciate ligament reconstruction using autologous hamstring graft. Twenty patients with anterior cruciate ligament injuries, performed a closed-chain leg-press while relaxed and against a 150 N load. The tibiofemoral contact patterns between 0° to 90° of knee flexion were recorded by magnetic resonance scans. All measurements were performed pre-operatively and repeated at 12 weeks and two years. Following reconstruction there was a mean passive anterior laxity of 2.1 mm (
We retrospectively reviewed the hospital records of 68 patients who had been referred with an injury to the posterolateral corner of the knee to a specialist knee surgeon between 2005 and 2009. These injuries were diagnosed based on a combination of clinical testing and imaging and arthroscopy when available. In all, 51 patients (75%) presented within 24 hours of their injury with a mean presentation at eight days (0 to 20) after the injury. A total of 63 patients (93%) had instability of the knee at presentation. There was a mean delay to the diagnosis of injury to the posterolateral corner of 30 months (0 to 420) from the time of injury. In all, the injuries in 49 patients (72%) were not identified at the time of the initial presentation, with the injury to the posterolateral corner only recognised in those patients who had severe multiple ligamentous injuries. The correct diagnosis, including injury to the posterolateral corner, had only been made in 34 patients (50%) at time of referral to a specialist knee clinic. MRI correctly identified 14 of 15 injuries when performed acutely (within 12 weeks of injury), but this was the case in only four of 15 patients in whom it was performed more than 12 weeks after the injury. Our study highlights a need for greater diligence in the examination and investigation of acute ligamentous injuries at the knee with symptoms of instability, in order to avoid failure to identify the true extent of the injury at the time when anatomical repair is most straightforward.
Bicruciate-stabilised total knee replacement (TKR) aims to restore normal kinematics by replicating the function of both cruciate ligaments. We performed a prospective, randomised controlled trial in which bicruciate- and posterior-stabilised TKRs were implanted in 13 and 15 osteo-arthritic knees, respectively. The mean age of the bicruciate-stabilised group was 63.9 years ( At near full extension during step-up, the bicruciate-stabilised TKR produced a higher mean PTA than the posterior-stabilised TKR, indicating that the bicruciate design at least partially restored the kinematic role of the anterior cruciate ligament. The bicruciate-stabilised TKR largely restored the pre-operative kinematics, whereas the posterior-stabilised TKR resulted in a consistently lower PTA at all activities. The PTA in the pre-operative knees was higher than in the control group during the step-up and at near full knee extension. Overall, both groups generated a more normal PTA than that seen in previous studies in high knee flexion. This suggested that both designs of TKR were more effective at replicating the kinematic role of the posterior cruciate ligament than those used in previous studies.
The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively. The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year). The linear wear rate of the Oxford UKR remains very low into the third decade. We believe that phase-2 bearings had lower wear rates than phase-1 implants because of the improved bearing design and surgical technique which decreased the incidence of impingement. We conclude that the design of the Oxford UKR gives low rates of wear in the long term.
We have examined the differences in clinical outcome of total knee replacement (TKR) with and without patellar resurfacing in a prospective, randomised study of 181 osteoarthritic knees in 142 patients using the Profix total knee system which has a femoral component with features considered to be anatomical and a domed patellar implant. The procedures were carried out between February 1998 and November 2002. A total of 159 TKRs in 142 patients were available for review at a mean of four years (3 to 7). The patients and the clinical evaluator were blinded in this prospective study. Evaluation was undertaken annually by an independent observer using the knee pain scale and the Knee Society clinical rating system. Specific evaluation of anterior knee pain, stair-climbing and rising from a seated to a standing position was also undertaken. No benefit was shown of TKR with patellar resurfacing over that without resurfacing with respect to any of the measured outcomes. In 22 of 73 knees (30.1%) with and 18 of 86 knees (20.9%) without patellar resurfacing there was some degree of anterior knee pain (p = 0.183). No revisions related to the patellofemoral joint were performed in either group. Only one TKR in each group underwent a re-operation related to the patellofemoral joint. A significant association between knee flexion contracture and anterior knee pain was observed in those knees with patellar resurfacing (p = 0.006).
Polyethylene particulate wear debris continues to be implicated in the aetiology of aseptic loosening following knee arthroplasty. The Oxford unicompartmental knee arthroplasty employs a spherical femoral component and a fully congruous meniscal bearing to increase contact area and theoretically reduce the potential for polyethylene wear. This study measures the In this The results from this
Haemophilia is an x-linked inherited bleeding disorder which can cause severe arthropathy. We have reviewed the results of 70 primary total knee replacements (TKR) performed in 57 haemophilic patients between 1983 and 2007. The functional results were assessed using the Hospital for Special Surgery (HSS) knee scoring system and Kaplan-Meier survivorship analysis. Six patients died. HSS scores were available for 60 TKRs at a mean follow-up of 9.2 years (2 to 23); 57 (95%) had good or excellent results. Deep infection was recorded in one patient. Kaplan-Meier analysis using infection and aseptic loosening as endpoints showed the survival rate at 20 years to be 94.0%. A reduction in infection, spontaneous haemarthrosis and improvement in the quality of life were noted to justify surgery in our series of patients with a mean age of 43 (25 to 70). We have found that using the latest techniques of continuous infusion of clotting Factor have significantly helped to reduce the complication rates and have achieved results which match those of the non-haemophilic population undergoing TKR.
The administration of intra-articular local anaesthetic is common following arthroscopy of the knee. However, recent evidence has suggested that bupivacaine may be harmful to articular cartilage. This study aimed to establish whether infiltration of bupivacaine around the portals is as effective as intra-articular injection. We randomised 137 patients to receive either 20 ml 0.5% bupivacaine introduced into the joint (group 1) or 20 ml 0.5% bupivacaine infiltrated only around the portals (group 2) following arthroscopy. A visual analogue scale was administered one hour post-operatively to assess pain relief. Both patients and observers were blinded to the treatment group. A power calculation was performed. The mean visual analogue score was 3.24 ( Infiltration of bupivacaine around the portals had an equivalent effect on pain scores at one hour, and we would therefore recommend this technique to avoid the possible chondrotoxic effect of intra-articular bupivacaine.
We assessed the reliability, accuracy and variability of closed-wedge high tibial osteotomy (HTO) using computer-assisted surgery compared to the conventional technique. A total of 50 closed-wedge HTO procedures were performed using the navigation system, and compared with 50 HTOs that had been performed with the conventional technique. In the navigation group, the mean mechanical axis prior to osteotomy was varus 8.2°, and the mean mechanical axis following fixation was valgus 3.6°. On the radiographs the mean pre-operative mechanical axis was varus 7.3°, and the mean post-operative mechanical axis was valgus 2.1°. There was a positive correlation between the measured data taken under navigation and by radiographs (r >
0.3, p <
0.05). The mean correction angle was significantly more accurate in the navigation group (p <
0.002). The variability of the correction was significantly lower in the navigation group (2.3°
We have developed a new tensor for total knee replacements which is designed to assist with soft-tissue balancing throughout the full range of movement with a reduced patellofemoral joint. Using this tensor in 40 patients with osteoarthritis we compared the intra-operative joint gap in cruciate-retaining and posterior-stabilised total knee replacements at 0°, 10°, 45°, 90° and 135° of flexion, with the patella both everted and reduced. While the measurement of the joint gap with a reduced patella in posterior-stabilised knees increased from extension to flexion, it remained constant for cruciate-retaining joints throughout a full range of movement. The joint gaps at deep knee flexion were significantly smaller for both types of prosthetic knee when the patellofemoral joint was reduced (p <
0.05).
The purpose of this study was to test the hypothesis that patella alta leads to a less favourable situation in terms of patellofemoral contact force, contact area and contact pressure than the normal patellar position, and thereby gives rise to anterior knee pain. A dynamic knee simulator system based on the Oxford rig and allowing six degrees of freedom was adapted in order to simulate and record the dynamic loads during a knee squat from 30° to 120° flexion under physiological conditions. Five different configurations were studied, with variable predetermined patellar heights. The patellofemoral contact force increased with increasing knee flexion until contact occurred between the quadriceps tendon and the femoral trochlea, inducing load sharing. Patella alta caused a delay of this contact until deeper flexion. As a consequence, the maximal patellofemoral contact force and contact pressure increased significantly with increasing patellar height (p <
0.01). Patella alta was associated with the highest maximal patellofemoral contact force and contact pressure. When averaged across all flexion angles, a normal patellar position was associated with the lowest contact pressures. Our results indicate that there is a biomechanical reason for anterior knee pain in patients with patella alta.
Valgus high tibial osteotomy for osteoarthritis of the medial compartment of the knee can be performed using medial opening- and lateral closing-wedge techniques. The latter have been thought to offer greater initial stability. We measured and compared the stability of opening- and closing-wedge osteotomies fixed by TomoFix plates using radiostereometry in a series of 42 patients in a prospective, randomised clinical trial. There were no differences between the opening- and closing-wedge groups in the time to regain knee function and full weight-bearing. Pain and knee function were significantly improved in both groups without any differences between them. All the osteotomies united within one year. Radiostereometry showed no clinically relevant movement of bone or differences between either group. Medial opening-wedge high tibial osteotomy secured by a TomoFix plate offers equal stability to a lateral closing-wedge technique. Both give excellent initial stability and provide significantly improved knee function and reduction in pain, although the opening-wedge technique was more likely to produce the intended correction.
Autologous chondrocyte implantation is an established method of treatment for symptomatic articular defects of cartilage. Clinically, all the patients improved significantly. Patients with lesions larger than 3 cm2 improved significantly more than those with smaller lesions. There was no correlation between the clinical outcome and the body mass index, age, duration of symptoms and location of the defects. The mean arthroscopic International Cartilage Repair Society score was 10 (5 to 12) of a maximum of 12. Predominantly hyaline cartilage was seen in eight of the 13 patients (62%) who had follow-up biopsies. Our findings suggest that autologous chondrocyte implantation in combination with a novel hydrogel results in a significant clinical improvement at follow-up at two years, more so for larger and deeper lesions. The surgical procedure is uncomplicated, and predominantly hyaline cartilage-like repair tissue was observed in eight patients.
Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses.
We investigated the changes in surface roughness of retrieved femoral components in 18 men and four women at revision knee surgery. The mean age at revision was 68.4 years and the mean period of implantation was for 55.6 months. Eighteen implants were retrieved for aseptic loosening and four for infection. The surface changes in the articulating areas were inspected visually and the roughness (Ra) analysed with a profilometer. Parallel scratching and burnishing were the two main forms of damage. The mean Ra measurements in the articulating areas showed no statistically significant difference when compared with those in a control area on either side of the patellar groove at the apex of the femoral flange. This suggests that it is not essential to revise a well-fixed and correctly aligned femoral component where the polished surface has become burnished or bears fine parallel scratches, if the revision is conducted solely for failure of the tibial component.
We performed a prospective, randomised trial of 44 patients to compare the functional outcomes of a posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-substituting total knee arthroplasty, and to gain a better understanding of the At follow-up at five years, no statistically significant differences were found in the clinical outcome measurements for either design. The prevalence of radiolucent lines and the survivorship were the same. In a subgroup of 15 knees, additional image-intensifier analysis in the horizontal and sagittal planes was performed during step-up and lunge activity. Our analysis revealed striking differences. Lunge activity showed a mean posterior displacement of both medial and lateral tibiofemoral contact areas (roll-back) which was greater and more consistent in the cruciate-substituting than in the cruciate-retaining group (medial p <
0.0001, lateral p = 0.011). The amount of posterior displacement could predict the maximum flexion which could be achieved (p = 0.018). Forward displacement of the tibiofemoral contact area in flexion during stair activity was seen more in the cruciate-retaining than in the cruciate-substituting group. This was attributed mainly to insufficiency of the posterior cruciate ligament and partially to that of the anterior cruciate ligament. We concluded that, despite similar clinical outcomes, there are significant kinematic differences between cruciate-retaining and cruciate-substituting arthroplasties.