Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 786 - 792
1 Jun 2016
Schotanus MGM Sollie R van Haaren EH Hendrickx RPM Jansen EJP Kort NP

Aims. This prospective randomised controlled trial was designed to evaluate the outcome of both the MRI- and CT-based patient-specific matched guides (PSG) from the same manufacturer. Patients and Methods. A total of 137 knees in 137 patients (50 men, 87 women) were included, 67 in the MRI- and 70 in the CT-based PSG group. Their mean age was 68.4 years (47.0 to 88.9). Outcome was expressed as the biomechanical limb alignment (centre hip-knee-ankle: HKA-axis) achieved post-operatively, the position of the individual components within 3° of the pre-operatively planned alignment, correct planned implant size and operative data (e.g. operating time and blood loss). Results. The patient demographics (e.g. age, body mass index), correct planned implant size and operative data were not significantly different between the two groups. The proportion of outliers in the coronal and sagittal plane ranged from 0% to 21% in both groups. Only the number of outliers for the posterior slope of the tibial component showed a significant difference (p = 0.004) with more outliers in the CT group (n = 9, 13%) than in the MRI group (0%). . Conclusion. The post-operative HKA-axis was comparable in the MRI- and CT-based PSGs, but there were significantly more outliers for the posterior slope in the CT-based PSGs. Take home message: Alignment with MRI-based PSG is at least as good as, if not better, than that of the CT-based PSG, and is the preferred imaging modality when performing TKA with use of PSG. Cite this article: Bone Joint J 2016;98-B:786–92


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis.

Methods

A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 102 - 107
1 Jan 2020
Sharma N Brown A Bouras T Kuiper JH Eldridge J Barnett A

Aims

Trochlear dysplasia is a significant risk factor for patellofemoral instability. The Dejour classification is currently considered the standard for classifying trochlear dysplasia, but numerous studies have reported poor reliability on both plain radiography and MRI. The severity of trochlear dysplasia is important to establish in order to guide surgical management. We have developed an MRI-specific classification system to assess the severity of trochlear dysplasia, the Oswestry-Bristol Classification (OBC). This is a four-part classification system comprising normal, mild, moderate, and severe to represent a normal, shallow, flat, and convex trochlear, respectively. The purpose of this study was to assess the inter- and intraobserver reliability of the OBC and compare it with that of the Dejour classification.

Methods

Four observers (two senior and two junior orthopaedic surgeons) independently assessed 32 CT and axial MRI scans for trochlear dysplasia and classified each according to the OBC and the Dejour classification systems. Assessments were repeated following a four-week interval. The inter- and intraobserver agreement was determined by using Fleiss’ generalization of Cohen’s kappa statistic and S-statistic nominal and linear weights.


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 552 - 558
1 May 2019
Clark D Stevens JM Tortonese D Whitehouse MR Simpson D Eldridge J

Aims

The aim of this study was to determine and compare the congruency of the articular surface contact area of the patellofemoral joint (PFJ) during both active and passive movement of the knee with the use of an MRI mapping technique in both the stable and unstable PFJ.

Patients and Methods

A prospective case-control MRI imaging study of patients with a history of PFJ instability and a control group of volunteers without knee symptoms was performed. The PFJs were imaged with the use of an MRI scan during both passive and active movement from 0° through to 40° of flexion. The congruency through measurement of the contact surface area was mapped in 5-mm intervals on axial slices. In all, 40 patients were studied. The case group included 31 patients with symptomatic patellofemoral instability and the control group of nine asymptomatic volunteers. The ages were well matched between the case and control groups. The mean age was 25 years (16 to 42; sd 6.9) in the case group and 26 years (19 to 32; sd 5.1) in the control group. There were 19 female and 12 male patients in the case group.


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 325 - 330
1 Mar 2019
Balcarek P Zimmermann F

Aims

The aim of this study was to evaluate cartilaginous patellotrochlear congruence and patellofemoral alignment parameters after deepening trochleoplasty in severe trochlear dysplasia.

Patients and Methods

The study group comprised 20 patients (two male, 18 female; mean age 24 years (16 to 39)) who underwent deepening trochleoplasty and medial patellofemoral ligament (MPFL) reconstruction for the treatment of recurrent lateral patellar dislocation due to severe trochlear dysplasia (Dejour type B to D). Pre- and postoperative MRI investigations of the study group were compared with MRI data of 20 age- and gender-matched control patients (two male, 18 female; mean age 27 years (18 to 44)) regarding the patellotrochlear contact ratio, patellotrochlear contact area, posterior patellar edge-trochlear groove ratio, and patellar tilt.


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 337 - 343
1 Mar 2017
Ahmed I Salmon L Roe J Pinczewski L

Aims

The aim of this study was to investigate the long-term clinical and radiological outcome of patients who suffer recurrent injuries to the anterior cruciate ligament (ACL) after reconstruction and require revision surgery.

Patients and Methods

From a consecutive series of 200 patients who underwent primary reconstruction following rupture of the ACL, we identified 36 who sustained a further rupture, 29 of whom underwent revision surgery. Patients were reviewed prospectively at one, two, seven, 15 and about 20 years after their original surgery. Primary outcome measures were the number of further ruptures, the posterior tibial slope (PTS), and functional and radiological outcomes. These were compared with a gender and age matched cohort of patients who underwent primary ACL reconstruction only.


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1479 - 1488
1 Nov 2016
Kalson NS Borthwick LA Mann DA Deehan DJ Lewis P Mann C Mont MA Morgan-Jones R Oussedik S Williams FMK Toms A Argenson JN Bellemans J Bhave A Furnes O Gollwitzer H Haddad FS Hofmann S Krenn V

Aims

The aim of this consensus was to develop a definition of post-operative fibrosis of the knee.

Patients and Methods

An international panel of experts took part in a formal consensus process composed of a discussion phase and three Delphi rounds.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1623 - 1630
1 Dec 2014
Monk AP Choji K O’Connor JJ Goodfellow† JW Murray DW

We scanned 25 left knees in healthy human subjects using MRI. Multiplanar reconstruction software was used to take measurements of the inferior and posterior facets of the femoral condyles and the trochlea.

A ‘basic circle’ can be defined which, in the sagittal plane, fits the posterior and inferior facets of the lateral condyle, the posterior facet of the medial condyle and the floor of the groove of the trochlea. It also approximately fits both condyles in the coronal plane (inferior facets) and the axial plane (posterior facets). The circle fitting the inferior facet of the medial condyle in the sagittal plane was consistently 35% larger than the other circles and was termed the ‘medial inferior circle’. There were strong correlations between the radii of the circles, the relative positions of the centres of the condyles, the width of the condyles, the total knee width and skeletal measurements including height. There was poor correlation between the radii of the circles and the position of the trochlea relative to the condyles.

In summary, the condyles are approximately spherical except for the inferior facet medially, which has a larger radius in the sagittal plane. The size and position of the condyles are consistent and change with the size of the person. However, the position of the trochlea is variable even though its radius is similar to that of the condyles. This information has implications for understanding anterior knee pain and for the design of knee replacements.

Cite this article: Bone Joint J 2014;96-B:1623–30.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 629 - 633
1 May 2011
Hirschmann MT Konala P Amsler F Iranpour F Friederich NF Cobb JP

We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose.

A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the tibial slope, but showed wide variability for all other measurements; 2D-CT also showed wide variability. 3D-CT was highly reliable, even when measuring rotation of the femoral components, and significantly better than 2D-CT. Interobserver variability in the measurements on radiographs were good (intraclass correlation coefficient (ICC) 0.65 to 0.82), but rotational measurements on 2D-CT were poor (ICC 0.29). On 3D-CT they were near perfect (ICC 0.89 to 0.99), and significantly more reliable than 2D-CT (p < 0.001).

3D-reconstructed images are sufficiently reliable to enable reporting of the position and orientation of the components. Rotational measurements in particular should be performed on 3D-reconstructed CT images. When faced with a poorly functioning TKR with concerns over component positioning, we recommend 3D-CT as the investigation of choice.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1209 - 1215
1 Sep 2012
Murakami AM Hash TW Hepinstall MS Lyman S Nestor BJ Potter HG

Component malalignment can be associated with pain following total knee replacement (TKR). Using MRI, we reviewed 50 patients with painful TKRs and compared them with a group of 16 asymptomatic controls to determine the feasibility of using MRI in evaluating the rotational alignment of the components. Using the additional soft-tissue detail provided by this modality, we also evaluated the extent of synovitis within these two groups. Angular measurements were based on the femoral transepicondylar axis and tibial tubercle. Between two observers, there was very high interobserver agreement in the measurements of all values. Patients with painful TKRs demonstrated statistically significant relative internal rotation of the femoral component (p = 0.030). There was relative internal rotation of the tibial to femoral component and combined excessive internal rotation of the components in symptomatic knees, although these results were significant only with one of the observers (p = 0.031). There was a statistically significant association between the presence and severity of synovitis and painful TKR (p < 0.001).

MRI is an effective modality in evaluating component rotational alignment.


Bone & Joint Research
Vol. 1, Issue 10 | Pages 263 - 271
1 Oct 2012
Sharma GB Saevarsson SK Amiri S Montgomery S Ramm H Lichti DD Lieck R Zachow S Anglin C

Objectives

Numerous complications following total knee replacement (TKR) relate to the patellofemoral (PF) joint, including pain and patellar maltracking, yet the options for in vivo imaging of the PF joint are limited, especially after TKR. We propose a novel sequential biplane radiological method that permits accurate tracking of the PF and tibiofemoral (TF) joints throughout the range of movement under weightbearing, and test it in knees pre- and post-arthroplasty.

Methods

A total of three knees with end-stage osteoarthritis and three knees that had undergone TKR at more than one year’s follow-up were investigated. In each knee, sequential biplane radiological images were acquired from the sagittal direction (i.e. horizontal X-ray source and 10° below horizontal) for a sequence of eight flexion angles. Three-dimensional implant or bone models were matched to the biplane images to compute the six degrees of freedom of PF tracking and TF kinematics, and other clinical measures.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1321 - 1329
1 Oct 2012
Sarmah SS Patel S Hossain FS Haddad FS

Radiological assessment of total and unicompartmental knee replacement remains an essential part of routine care and follow-up. Appreciation of the various measurements that can be identified radiologically is important. It is likely that routine plain radiographs will continue to be used, although there has been a trend towards using newer technologies such as CT, especially in a failing knee, where it provides more detailed information, albeit with a higher radiation exposure.

The purpose of this paper is to outline the radiological parameters used to evaluate knee replacements, describe how these are measured or classified, and review the current literature to determine their efficacy where possible.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 601 - 605
1 May 2006
Pitto RP Graydon AJ Bradley L Malak SF Walker CG Anderson IA

The object of this study was to develop a method to assess the accuracy of an image-free total knee replacement navigation system in legs with normal or abnormal mechanical axes. A phantom leg was constructed with simulated hip and knee joints and provided a means to locate the centre of the ankle joint. Additional joints located at the midshaft of the tibia and femur allowed deformation in the flexion/extension, varus/valgus and rotational planes. Using a digital caliper unit to measure the coordinates precisely, a software program was developed to convert these local coordinates into a determination of actual leg alignment. At specific points in the procedure, information was compared between the digital caliper measurements and the image-free navigation system. Repeated serial measurements were undertaken. In the setting of normal alignment the mean error of the system was within 0.5°. In the setting of abnormal plane alignment in both the femur and the tibia, the error was within 1°. This is the first study designed to assess the accuracy of a clinically-validated navigation system. It demonstrates in vitro accuracy of the image-free navigation system in both normal and abnormal leg alignment settings.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1045 - 1048
1 Aug 2008
Shetty AA Tindall AJ James KD Relwani J Fernando KW

The diagnosis of a meniscal tear may require MRI, which is costly. Ultrasonography has been used to image the meniscus, but there are no reliable data on its accuracy. We performed a prospective study investigating the sensitivity and specificity of ultrasonography in comparison with MRI; the final outcome was determined at arthroscopy. The study included 35 patients with a mean age of 47 years (14 to 73).

There was a sensitivity of 86.4% (95% confidence interval (CI) 75 to 97.7), a specificity of 69.2% (95% CI 53.7 to 84.7), a positive predictive value of 82.6% (95% CI 70 to 95.2) and a negative predictive value of 75% (95% CI 60.7 to 81.1) for ultrasonography. This compared favourably with a sensitivity of 86.4% (95% CI 75 to 97.7), a specificity of 100.0%, a positive predictive value of 100.0% and a negative predictive value of 81.3% (95% CI 74.7 to 87.9) for MRI.

Given that the sensitivity matched that of MRI we feel that ultrasonography can reasonably be applied to confirm the clinical diagnosis before undertaking arthroscopy. However, the lower specificity suggests that there is still a need to improve the technique to reduce the number of false-positive diagnoses and thus to avoid unnecessary arthroscopy.