Advertisement for orthosearch.org.uk
Results 1 - 100 of 222
Results per page:
Bone & Joint Research
Vol. 6, Issue 3 | Pages 154 - 161
1 Mar 2017
Liu J Li X Zhang H Gu R Wang Z Gao Z Xing L

Objectives. Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. Methods. We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay. Results. The expression levels of WW Domain Containing E3 Ubiquitin Protein Ligase 1 (Wwp1), SMAD Specific E3 Ubiquitin Protein Ligase 1 (Smurf1), SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and Itch were all significantly increased in the fracture callus of WT mice, which was associated with elevated expression of NF-κB members and total ubiquitinated proteins. Callus tissue isolated from Itch KO mice expressed higher levels of osteoblast-associated genes, including Runx2, a positive regulator of osteoblast differentiation, but osteoclast-associated genes were not increased. Both NF-κB RelA and RelB proteins were found to bind to the NF-κB binding site in the mouse Itch promoter. Conclusions. Our findings indicate that Itch depletion may have a strong positive effect on osteoblast differentiation in fracture callus. Thus, ubiquitin E3 ligase Itch could be a potential target for enhancing bone fracture healing. Cite this article: J. Liu, X. Li, H. Zhang, R. Gu, Z. Wang, Z. Gao, L. Xing. Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res 2017;6:154–161. DOI: 10.1302/2046-3758.63.BJR-2016-0237.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 759 - 770
1 Jul 2004
Vermes C Chandrasekaran R Dobai JG Jacobs JJ Andersson GBJ An H Hallab NJ Galante JO Glant TT

Periprosthetic bone loss after total joint arthroplasty is a major clinical problem resulting in aseptic loosening of the implant. Among many cell types, osteoblasts play a crucial role in the development of peri-implant osteolysis. In this study, we tested the effects of calcitriol (1α,25-dihydroxy-vitamin-D. 3. ) and the bisphosphonate pamidronate on titanium-particle- and TNF-α-induced release of interleukin-6 and suppression of osteoblast-specific gene expressions in bone-marrow-derived stromal cells with an osteoblastic phenotype. We monitored the expression of procollagen α1[1], osteocalcin, osteonectin and alkaline phosphatase mRNAs by Northern blots and real-time reverse transcription and polymerase chain reaction analyses. The release of various cytokines was also analysed by ELISA. We found that calcitriol or pamidronate could only partially recover the altered functions of osteoblasts when added alone. Only a combination of these compounds restored all the tested functions of osteoblasts. The local delivery of these drugs may have therapeutic potential to prevent or to treat periprosthetic osteolysis and aseptic loosening of implants


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1394 - 1400
1 Oct 2006
Eid K Labler L Ertel W Trentz O Keel M

Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells, osteoblastic cells (MG-63), and bone-marrow stromal cells (hBM)) were incubated with serum from ten consecutive polytraumatised patients taken from post-traumatic day 1 to day 21 and with serum from 12 healthy control subjects.

The serum from the polytraumatised patients significantly stimulated the proliferation of fibroblasts, MG-63 and of hBM cells. The activity of alkaline phosphatase in MG-63 and hBM cells was significantly decreased when exposed to the serum of the severely-injured patient. After three weeks in 3D cell cultures, matrix production and osteogenic gene expression of hBM cells were equal in the patient and control groups. However, the serum from the polytraumatised patients significantly decreased apoptosis of hBM cells compared with the control serum (4.3% vs 19.1%, p = 0.031).

Increased proliferation of osteoblastic cells and reduced apoptosis of osteoprogenitors may be responsible for increased osteogenesis in severely-injured patients.


Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Bone & Joint 360
Vol. 13, Issue 5 | Pages 51 - 52
1 Oct 2024
Marson BA

The Cochrane Collaboration has produced three new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner. These are relevant to a wide range of musculoskeletal specialists, and include reviews in lateral elbow pain, osteoarthritis of the big toe joint, and cervical spine injury in paediatric trauma patients.


Bone & Joint 360
Vol. 13, Issue 3 | Pages 48 - 49
3 Jun 2024
Marson BA

The Cochrane Collaboration has produced five new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner These reviews are relevant to a wide range of musculoskeletal specialists, and include reviews in Morton’s neuroma, scoliosis, vertebral fractures, carpal tunnel syndrome, and lower limb arthroplasty.


Bone & Joint 360
Vol. 12, Issue 5 | Pages 49 - 50
1 Oct 2023
Marson BA

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering pharmacological interventions for the prevention of bleeding in people undergoing definitive fixation or joint replacement for hip, pelvic, and long bone fractures; interventions for reducing red blood cell transfusion in adults undergoing hip fracture surgery: an overview of systematic reviews; and pharmacological treatments for low back pain in adults: an overview of Cochrane Reviews


Bone & Joint 360
Vol. 13, Issue 1 | Pages 44 - 45
1 Feb 2024
Marson BA

This edition of the Cochrane Corner looks at the three reviews that were published in the second half of 2023: surgical versus non-surgical interventions for displaced intra-articular calcaneal fractures; cryotherapy following total knee arthroplasty; and physical activity and education about physical activity for chronic musculoskeletal pain in children and adolescents.


Bone & Joint 360
Vol. 13, Issue 6 | Pages 48 - 49
1 Dec 2024
Evans JT Kulkarni Y Whitehouse MR


Bone & Joint 360
Vol. 13, Issue 4 | Pages 43 - 45
2 Aug 2024
Evans JT Evans JP Whitehouse MR


Bone & Joint 360
Vol. 12, Issue 6 | Pages 49 - 51
1 Dec 2023
Burden EG Whitehouse MR Evans JT


Bone & Joint 360
Vol. 11, Issue 5 | Pages 46 - 47
1 Oct 2022
Das A


Bone & Joint 360
Vol. 11, Issue 4 | Pages 44 - 46
1 Aug 2022
Evans JT Walton TJ Whitehouse MR


Bone & Joint 360
Vol. 11, Issue 3 | Pages 46 - 47
1 Jun 2022
Das A


Bone & Joint 360
Vol. 11, Issue 1 | Pages 50 - 51
1 Feb 2022
Das A


Bone & Joint Research
Vol. 5, Issue 12 | Pages 594 - 601
1 Dec 2016
Li JJ Wang BQ Fei Q Yang Y Li D

Objectives. In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. Methods. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs. Results. A total of three microarray studies were selected for integrated analysis. In all, 1125 genes were found to be significantly differentially expressed between osteoporosis patients and normal controls, with 373 upregulated and 752 downregulated genes. Positive regulation of the cellular amino metabolic process (gene ontology (GO): 0033240, false discovery rate (FDR) = 1.00E + 00) was significantly enriched under the GO category for biological processes, while for molecular functions, flavin adenine dinucleotide binding (GO: 0050660, FDR = 3.66E-01) and androgen receptor binding (GO: 0050681, FDR = 6.35E-01) were significantly enriched. DEGs were enriched in many osteoporosis-related signalling pathways, including those of mitogen-activated protein kinase (MAPK) and calcium. Protein-protein interaction (PPI) network analysis showed that the significant hub proteins contained ubiquitin specific peptidase 9, X-linked (Degree = 99), ubiquitin specific peptidase 19 (Degree = 57) and ubiquitin conjugating enzyme E2 B (Degree = 57). Conclusion. Analysis of gene function of identified differentially expressed genes may expand our understanding of fundamental mechanisms leading to osteoporosis. Moreover, significantly enriched pathways, such as MAPK and calcium, may involve in osteoporosis through osteoblastic differentiation and bone formation. Cite this article: J. J. Li, B. Q. Wang, Q. Fei, Y. Yang, D. Li. Identification of candidate genes in osteoporosis by integrated microarray analysis. Bone Joint Res 2016;5:594–601. DOI: 10.1302/2046-3758.512.BJR-2016-0073.R1


Bone & Joint 360
Vol. 10, Issue 3 | Pages 38 - 39
1 Jun 2021
Das A


Bone & Joint 360
Vol. 10, Issue 2 | Pages 57 - 59
1 Apr 2021
Evans JT Whitehouse MR Evans JP


Bone & Joint Research
Vol. 6, Issue 12 | Pages 640 - 648
1 Dec 2017
Xia B Li Y Zhou J Tian B Feng L

Objectives. Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis. Methods. Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma package (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify biological functions. Furthermore, the transcriptional regulatory network was established between the top 20 DEGs and transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating characteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs. Results. A total of 1320 DEGs were obtained, of which 855 were up-regulated and 465 were down-regulated. These differentially expressed genes were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, mainly associated with gene expression and osteoclast differentiation. In the transcriptional regulatory network, there were 6038 interactions pairs involving 88 transcriptional factors. In addition, the quantitative reverse transcriptase-polymerase chain reaction result validated the expression of several genes (VPS35, FCGR2A, TBCA, HIRA, TYROBP, and JUND). Finally, ROC analyses showed that VPS35, HIRA, PHF20 and NFKB2 had a significant diagnostic value for osteoporosis. Conclusion. Genes such as VPS35, FCGR2A, TBCA, HIRA, TYROBP, JUND, PHF20, NFKB2, RPL35A and BICD2 may be considered to be potential pathogenic genes of osteoporosis and may be useful for further study of the mechanisms underlying osteoporosis. Cite this article: B. Xia, Y. Li, J. Zhou, B. Tian, L. Feng. Identification of potential pathogenic genes associated with osteoporosis. Bone Joint Res 2017;6:640–648. DOI: 10.1302/2046-3758.612.BJR-2017-0102.R1


Bone & Joint Research
Vol. 7, Issue 1 | Pages 36 - 45
1 Jan 2018
Kleinlugtenbelt YV Krol RG Bhandari M Goslings JC Poolman RW Scholtes VAB

Objectives. The patient-rated wrist evaluation (PRWE) and the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire are patient-reported outcome measures (PROMs) used for clinical and research purposes. Methodological high-quality clinimetric studies that determine the measurement properties of these PROMs when used in patients with a distal radial fracture are lacking. This study aimed to validate the PRWE and DASH in Dutch patients with a displaced distal radial fracture (DRF). Methods. The intraclass correlation coefficient (ICC) was used for test-retest reliability, between PROMs completed twice with a two-week interval at six to eight months after DRF. Internal consistency was determined using Cronbach’s α for the dimensions found in the factor analysis. The measurement error was expressed by the smallest detectable change (SDC). A semi-structured interview was conducted between eight and 12 weeks after DRF to assess the content validity. Results. A total of 119 patients (mean age 58 years (. sd. 15)), 74% female, completed PROMs at a mean time of six months (. sd. 1) post-fracture. One overall meaningful dimension was found for the PRWE and the DASH. Internal consistency was excellent for both PROMs (Cronbach’s α 0.96 (PRWE) and 0.97 (DASH)). Test-retest reliability was good for the PRWE (ICC 0.87) and excellent for the DASH (ICC 0.91). The SDC was 20 for the PRWE and 14 for the DASH. No floor or ceiling effects were found. The content validity was good for both questionnaires. Conclusion. The PRWE and DASH are valid and reliable PROMs in assessing function and disability in Dutch patients with a displaced DRF. However, due to the high SDC, the PRWE and DASH are less useful for individual patients with a distal radial fracture in clinical practice. Cite this article: Y. V. Kleinlugtenbelt, R. G. Krol, M. Bhandari, J. C. Goslings, R. W. Poolman, V. A. B. Scholtes. Are the patient-rated wrist evaluation (PRWE) and the disabilities of the arm, shoulder and hand (DASH) questionnaire used in distal radial fractures truly valid and reliable? Bone Joint Res 2018;7:36–45. DOI: 10.1302/2046-3758.71.BJR-2017-0081.R1


Bone & Joint Research
Vol. 7, Issue 7 | Pages 494 - 500
1 Jul 2018
Jiang L Zhu X Rong J Xing B Wang S Liu A Chu M Huang G

Objectives. Given the function of adiponectin (ADIPOQ) on the inflammatory condition of obesity and osteoarthritis (OA), we hypothesized that the ADIPOQ gene might be a candidate gene for a marker of susceptibility to OA. Methods. We systematically screened three tagging polymorphisms (rs182052, rs2082940 and rs6773957) in the ADIPOQ gene, and evaluated the association between the genetic variants and OA risk in a case-controlled study that included 196 OA patients and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform. Results. The single nucleotide polymorphism (SNP) rs182052 was found to be potentially associated with knee OA risk (additive model: odds ratio = 1.38; 95% confidence interval 1.07 to 1.76; p = 0.012). Furthermore, a non-significant association was observed for rs182052 and body mass index with regard to OA risk in interaction analyses (p = 0.063). Similarly, no significant interaction was detected for rs182052 and age with regard to OA risk (p = 0.614). Conclusion. These findings suggest that the SNP rs182052 in the ADIPOQ gene may potentially modify individual susceptibility to knee OA in the Chinese population. Further studies are warranted to investigate our findings in more depth. Cite this article: L. Jiang, X. Zhu, J. Rong, B. Xing, S. Wang, A. Liu, M. Chu, G. Huang. Obesity, osteoarthritis and genetic risk: The rs182052 polymorphism in the ADIPOQ gene is potentially associated with risk of knee osteoarthritis. Bone Joint Res 2018;7:494–500. DOI: 10.1302/2046-3758.77.BJR-2017-0274.R1


Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results. Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion. This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1


Bone & Joint 360
Vol. 9, Issue 5 | Pages 49 - 50
1 Oct 2020
Das MA


Bone & Joint Research
Vol. 6, Issue 11 | Pages 631 - 639
1 Nov 2017
Blyth MJG Anthony I Rowe P Banger MS MacLean A Jones B

Objectives. This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group. Methods. A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery. Results. From the first post-operative day through to week 8 post-operatively, the median pain scores for the robotic arm-assisted group were 55.4% lower than those observed in the manual surgery group (p = 0.040). At three months post-operatively, the robotic arm-assisted group had better AKSS (robotic median 164, interquartile range (IQR) 131 to 178, manual median 143, IQR 132 to 166), although no difference was noted with the OKS. At one year post-operatively, the observed differences with the AKSS had narrowed from a median of 21 points to a median of seven points (p = 0.106) (robotic median 171, IQR 153 to 179; manual median 164, IQR 144 to 182). No difference was observed with the OKS, and almost half of each group reached the ceiling limit of the score (OKS > 43). A greater proportion of patients receiving robotic arm-assisted surgery improved their UCLA activity score. Binary logistic regression modelling for dichotomised outcome scores predicted the key factors associated with achieving excellent outcome on the AKSS: a pre-operative activity level > 5 on the UCLA activity score and use of robotic-arm surgery. For the same regression modelling, factors associated with a poor outcome were manual surgery and pre-operative depression. Conclusion. Robotic arm-assisted surgery results in improved early pain scores and early function scores in some patient-reported outcomes measures, but no difference was observed at one year post-operatively. Although improved results favoured the robotic arm-assisted group in active patients (i.e. UCLA ⩾ 5), these do not withstand adjustment for multiple comparisons. Cite this article: M. J. G. Blyth, I. Anthony, P. Rowe, M. S. Banger, A. MacLean, B. Jones. Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: Exploratory secondary analysis of a randomised controlled trial. Bone Joint Res 2017;6:631–639. DOI: 10.1302/2046-3758.611.BJR-2017-0060.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 848 - 855
1 Jun 2012
Tayton ER Smith JO Aarvold A Kalra S Dunlop DG Oreffo ROC

When transferring tissue regenerative strategies involving skeletal stem cells to human application, consideration needs to be given to factors that may affect the function of the cells that are transferred. Local anaesthetics are frequently used during surgical procedures, either administered directly into the operative site or infiltrated subcutaneously around the wound. The aim of this study was to investigate the effects of commonly used local anaesthetics on the morphology, function and survival of human adult skeletal stem cells. Cells from three patients who were undergoing elective hip replacement were harvested and incubated for two hours with 1% lidocaine, 0.5% levobupivacaine or 0.5% bupivacaine hydrochloride solutions. Viability was quantified using WST-1 and DNA assays. Viability and morphology were further characterised using CellTracker Green/Ethidium Homodimer-1 immunocytochemistry and function was assessed by an alkaline phosphatase assay. An additional group was cultured for a further seven days to allow potential recovery of the cells after removal of the local anaesthetic. A statistically significant and dose dependent reduction in cell viability and number was observed in the cell cultures exposed to all three local anaesthetics at concentrations of 25% and 50%, and this was maintained even following culture for a further seven days. This study indicates that certain local anaesthetic agents in widespread clinical use are deleterious to skeletal progenitor cells when studied in vitro; this might have relevance in clinical applications


Bone & Joint Research
Vol. 6, Issue 1 | Pages 57 - 65
1 Jan 2017
Gumucio JP Flood MD Bedi A Kramer HF Russell AJ Mendias CL

Objectives. Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Methods. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. Results. At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. Conclusions. GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred. Cite this article: J. P. Gumucio, M. D. Flood, A. Bedi, H. F. Kramer, A. J. Russell, C. L. Mendias. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear. Bone Joint Res 2017;6:57–65. DOI: 10.1302/2046-3758.61.BJR-2016-0232.R1


Bone & Joint 360
Vol. 9, Issue 3 | Pages 44 - 45
1 Jun 2020
Das MA


Bone & Joint 360
Vol. 9, Issue 1 | Pages 51 - 52
1 Feb 2020
Das A


Bone & Joint Research
Vol. 9, Issue 4 | Pages 162 - 172
1 Apr 2020
Xie S Conlisk N Hamilton D Scott C Burnett R Pankaj P

Aims

Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA.

Methods

This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 906 - 911
1 Aug 2004
Kearns SR Daly AF Sheehan K Murray P Kelly C Bouchier-Hayes D

Compartment syndrome is a unique form of ischaemia of skeletal muscle which occurs despite patency of the large vessels. Decompression allows the influx of activated leucocytes which cause further injury. Vitamin C is a powerful antioxidant which concentrates preferentially in leucocytes and attenuates reperfusion-induced muscle injury. We have evaluated the use of pretreatment with oral vitamin C in the prevention of injury caused by compartment syndrome in a rat cremasteric muscle model. Acute and delayed effects of pretreatment with vitamin C were assessed at one and 24 hours after decompression of compartment syndrome. Muscle function was assessed electrophysiologically. Vascular, cellular and tissue inflammation was assessed by staining of intercellular adhesion molecule-1 (ICAM-1) and by determination of the activity of myeloperoxidase (MPO) in neutrophils and tissue oedema. Compartment syndrome impaired skeletal muscle function and increased the expression of ICAM-1, activity of MPO and muscle weight increased significantly. Pretreatment with vitamin C preserved muscle function and reduced the expression of ICAM-1, infiltration of the neutrophils and oedema


Bone & Joint 360
Vol. 8, Issue 4 | Pages 46 - 47
1 Aug 2019
Das A


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives. The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. Methods. The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. Results. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. Conclusion. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56–64


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1202 - 1206
1 Nov 2001
Kearns SR Moneley D Murray P Kelly C Daly AF

Ischaemia-reperfusion injury (IRI) is caused by endothelial and subendothelial damage by neutrophil-derived oxidants. Vitamin C is an antioxidant which attenuates endothelial injury after IRI. Our aim was to evaluate the effect of oral vitamin C in the prevention of IRI in skeletal muscle. We used a model of cross-clamping (3 hours) and reperfusion (1 hour) of the cremaster muscle in rats. Muscle function was assessed electrophysiologically by electrical field stimulation. Infiltration by neutrophils was determined by the activity of tissue myeloperoxidase (MPO) and tissue oedema by the wet-to-dry ratio. Neutrophil respiratory burst activity was measured in control animals and groups pretreated with vitamin C. IRI significantly decreased muscle function and increased muscle neutrophil MPO activity and muscle oedema. Pretreatment with vitamin C preserved muscle function and reduced tissue oedema and neutrophil infiltration. Neutrophil respiratory burst activity was reduced in the group treated with vitamin C compared with the control group. We conclude that pretreatment with oral vitamin C protects against acute muscle IRI, possibly by attenuating neutrophil respiratory burst activity


Bone & Joint Research
Vol. 8, Issue 2 | Pages 101 - 106
1 Feb 2019
Filardo G Petretta M Cavallo C Roseti L Durante S Albisinni U Grigolo B

Objectives

Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology.

Methods

A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 918 - 924
1 Aug 2004
Nishida J Araki S Akasaka T Toba T Shimamura T Amadio PC An K

The excursion resistance between the tendon and pulley is an important factor contributing to the limitation of function after surgery to the hand. The administration of hyaluronic acid (HA) in the early rehabilitation after tendon grafting may help to prevent adhesions. We evaluated changes in the excursion resistance between potential sources of flexor tendon grafts and the annular pulley in a canine model after administration of HA. The intrasynovial and extrasynovial tendons were soaked in 10 mg/ml of HA for five minutes. The excursion resistance between these tendons and the annular pulley of an intact proximal phalanx and that of the same tendons of the opposite foot without administration of HA were evaluated. The tendon of flexor digitorum profundus of the second toe without administration of HA was used as a control. The gliding resistance of canine tendons was significantly decreased after the administration of HA especially in the extrasynovial tendons. Our findings suggest that the administration of HA may improve the gliding function of a flexor tendon graft


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1014 - 1018
1 Nov 1997
Polo A Aldegheri R Zambito A Trivella G Manganotti P De Grandis D Rizzuto N

We assessed peripheral nerve function during and after lower-limb lengthening by callotasis in 14 patients with short stature, using motor conduction studies. Four patients with short stature of varying aetiology showed unilateral and one showed bilateral weakness of foot dorsiflexion. Both clinical and electrophysiological abnormalities consistent with involvement of the peroneal nerve were observed early after starting tibial callotasis. There was some progressive electro-physiological improvement despite continued bone distraction, but two patients with Turner’s syndrome had incomplete recovery. A greater percentage increase in tibial length did not correspond to a higher rate of peroneal nerve palsy. The function of the posterior leg muscles and the conduction velocity of the posterior tibial nerve were normal throughout the monitoring period. The F-wave response showed a longer latency at the end of the bone distraction than in basal conditions; this is probably related to the slowing of conduction throughout the entire length of the nerve


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 614 - 618
1 May 2002
Grob KR Kuster MS Higgins SA Lloyd DG Yata H

Current methods of measurement of proprioceptive function depend on the ability to detect passive movement (kinaesthesia) or the awareness of joint position (joint position sense, JPS). However, reports of proprioceptive function in healthy and pathological joints are quite variable, which may be due to the different methods used. We have compared the validity of several frequently used methods to quantify proprioception. Thirty healthy subjects aged between 24 and 72 years underwent five established tests of proprioception. Two tests were used for the measurement of kinaesthesia (KT1 and KT2). Three tests were used for the measurement of JPS, a passive reproduction test (JPS1), a relative reproduction test (JPS2) and a visual estimation test (JPS3). There was no correlation between the tests for kinaesthesia and JPS or between the different JPS tests. There was, however, a significant correlation between the tests for kinaesthesia (r = 0.86). We conclude therefore that a subject with a given result in one test will not automatically obtain a similar result in another test for proprioception. Since they describe different functional proprioceptive attributes, proprioceptive ability cannot be inferred from independent tests of either kinaesthesia or JPS


Objectives

Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes.

Methods

Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Nfat1-/- AC at the initiation stage of OA, and possessed at least four NFAT1 binding sites in the promoter of each gene, were selected and tested for NFAT1 transcriptional activities by chromatin immunoprecipitation (ChIP) and promoter luciferase reporter assays using chondrocytes isolated from the AC of three- to four-month-old wild-type mice or Nfat1-/- mice with early OA phenotype.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 2 | Pages 270 - 275
1 Mar 1996
Hooten JP Engh CA Heekin RD Vinh TN

Two acetabula which contained large bone allografts introduced at revision arthroplasty were obtained at post-mortem. The allografts had been placed in superior defects to support cementless acetabular components, and both hips were functioning well at the time of death. Clinical radiographs demonstrated apparent healing of graft to host bone, no graft collapse and stability of the acetabular components. Microscopic examination of sections through these specimens showed that the bulk allografts were encapsulated in fibrous tissue. Vascularity was increased at the host-graft interface, but there was limited evidence of bone union between the graft and the host. In the few areas where union had occurred, revascularisation extended no more than 2 mm beyond the graft-host interface. Within the body of the graft, the acellular matrix of trabecular bone maintained structural integrity up to 48 months after surgery. In areas where the allograft was adjacent to an implant, there was fibrous tissue orientated parallel to the implant surface. The acetabulum which contained a porous-coated component showed evidence of bone growth into the porous surface where it was in contact with viable host bone. No ingrowth occurred in areas where the porous coating was in contact with the graft. Although the grafts were functioning well, allograft revascularisation and remodelling were minimal, and the radiological appearance of healing did not correlate with histological findings


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 6 | Pages 1076 - 1082
1 Nov 1999
Iwasaki M Jikko A Le AX

Bone morphogenetic protein (BMP) has a crucial role in osteochondrogenesis of bone formation as well as in the repair of fractures. The interaction between hedgehog protein and BMPs is inferred from recent molecular studies. Hedgehog genes encode secreted proteins which mediate patterning and growth during skeletal development. We have shown that Indian hedgehog gene (Ihh) is expressed in cartilage anlage and later in mature and hypertrophic chondrocytes. This finding suggests that Ihh may regulate the development of chondrocytes. Our results in this study have shown that Ihh transcripts were expressed in hypertrophic chondrocytes in mice at three days but not at three weeks, although a similar expression pattern of α1 (X) collagen could be observed in both types of cartilage. To investigate the possibility that there are direct and age-dependent functions of Ihh in chondrocytes, cultured chondrocytes were treated with the amino-terminal fragment of Sonic hedgehog protein (Shh-N) which can functionally substitute for Ihh protein. Shh-N did not affect the proliferation and differentiation of chondrocytes from three-week-old mice but had a significant effect on three-day-old mice. It enhanced proliferation up to 128% of the control culture in a dose-dependent manner. Although there was no effect in Shh-N-treated cultures, Shh-N enhanced the stimulatory effect of parathyroid hormone (PTH) on the synthesis of proteoglycans. Because the effects of Shh-N on chondrocyte differentiation in this culture system differed from those of bone morphogenetic protein-2 (BMP2) and PTH, in terms of proteoglycan synthesis and ALPase activity, it is unlikely that BMP2 or PTH/PTH-related protein mediates the direct effects of Ihh in chondrocytes. Our study shows that Ihh can function in chondrocytes in a direct and age-dependent fashion


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1635 - 1640
1 Dec 2008
Spence G Phillips S Campion C Brooks R Rushton N

Carbonate-substituted hydroxyapatite (CHA) is more osteoconductive and more resorbable than hydroxyapatite (HA), but the underlying mode of its action is unclear. We hypothesised that increased resorption of the ceramic by osteoclasts might subsequently upregulate osteoblasts by a coupling mechanism, and sought to test this in a large animal model. Defects were created in both the lateral femoral condyles of 12 adult sheep. Six were implanted with CHA granules bilaterally, and six with HA. Six of the animals in each group received the bisphosphonate zoledronate (0.05 mg/kg), which inhibits the function of osteoclasts, intra-operatively. After six weeks bony ingrowth was greater in the CHA implants than in HA, but not in the animals given zoledronate. Functional osteoclasts are necessary for the enhanced osteoconduction seen in CHA compared with HA


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1257 - 1262
1 Sep 2009
Sundar S Pendegrass CJ Oddy MJ Blunn GW

We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an in vivo ovine model of reconstruction of the extensor mechanism at the knee. We hypothesised that augmentation of the tendon-implant interface with DBM would enhance the functional and histological outcomes as compared with previously reported control reconstructions without DBM. Function was assessed at six and 12 weeks postoperatively, and histological examination was undertaken at 12 weeks. A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 873 - 878
1 Jun 2005
Oddy MJ Pendegrass CJ Goodship AE Cannon SR Briggs TWR Blunn GW

We developed an in vivo model of the attachment of a patellar tendon to a metal implant to simulate the reconstruction of an extensor mechanism after replacement of the proximal tibia. In 24 ewes, the patellar tendon was attached to a hydroxyapatite (HA)-coated titanium prosthesis. In 12, the interface was augmented with autograft containing cancellous bone and marrow. In the remaining ewes, the interface was not grafted. Kinematic gait analysis showed nearly normal function of the joint by 12 weeks. Force-plate assessment showed a significant increase in functional weight-bearing in the grafted animals (p = 0.043). The tendon-implant interface showed that without graft, encapsulation of fibrous tissue occurred. With autograft, a developing tendon-bone-HA-implant interface was observed at six weeks and by 12 weeks a layered tendon-fibrocartilage-bone interface was seen which was similar to a direct-type enthesis. With stable mechanical fixation, an appropriate bioactive surface and biological augmentation the development of a functional tendon-implant interface can be achieved


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 421 - 425
1 Mar 2005
Blom AW Cunningham JL Hughes G Lawes TJ Smith N Blunn G Learmonth ID Goodship AE

This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 114 - 121
1 Jan 2008
Pendegrass CJ Gordon D Middleton CA Sun SNM Blunn GW

Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography in vitro. We used immunolocalisation of adhesion complex components, scanning electron microscopy and transmission electron microscopy to assess cell parameters. We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment in vivo, producing an effective barrier of infection


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1256 - 1259
1 Sep 2008
Kedgley AE DeLude JA Drosdowech DS Johnson JA Bicknell RT

This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the glenohumeral joint during passive abduction after hemiarthroplasty of the shoulder for the treatment of fractures. We used seven pairs of fresh-frozen cadaver shoulders to create simulated four-part fractures of the proximal humerus, which were then reconstructed with hemiarthroplasty and reattachment of the tuberosities. The specimens were randomised, so that one from each pair was repaired using the computer-assisted technique, whereas a traditional hemiarthroplasty without navigation was performed in the contralateral shoulder. Kinematic data were obtained using an electromagnetic tracking device. The traditional technique resulted in posterior and inferior translation of the humeral head. No statistical differences were observed before or after computer-assisted surgery. Although it requires further improvement, the computer-assisted approach appears to allow glenohumeral kinematics to more closely replicate those of the native joint, potentially improving the function of the shoulder and extending the longevity of the prosthesis


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim

Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage.

Patients and Methods

Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID).


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 577 - 582
1 Apr 2005
Senavongse W Amis AA

Normal function of the patellofemoral joint is maintained by a complex interaction between soft tissues and articular surfaces. No quantitative data have been found on the relative contributions of these structures to patellar stability. Eight knees were studied using a materials testing machine to displace the patella 10 mm laterally and medially and measure the force required. Patellar stability was tested from 0° to 90° knee flexion with the quadriceps tensed to 175 N. Four conditions were examined: intact, vastus medialis obliquus relaxed, flat lateral condyle, and ruptured medial retinaculae. Abnormal trochlear geometry reduced the lateral stability by 70% at 30° flexion, while relaxation of vastus medialis obliquus caused a 30% reduction. Ruptured medial retinaculae had the largest effect at 0° flexion with 49% reduction. There was no effect on medial stability. There is a complex interaction between these structures, with their contributions to loss of lateral patellar stability varying with knee flexion


Objectives

Degenerative disc disease (DDD) and osteoarthritis (OA) are relatively frequent causes of disability amongst the elderly; they constitute serious socioeconomic costs and significantly impair quality of life. Previous studies to date have found that aggrecan variable number of tandem repeats (VNTR) contributes both to DDD and OA. However, current data are not consistent across studies. The purpose of this study was to evaluate systematically the relationship between aggrecan VNTR, and DDD and/or OA.

Methods

This study used a highly sensitive search strategy to identify all published studies related to the relationship between aggrecan VNTR and both DDD and OA in multiple databases from January 1996 to December 2016. All identified studies were systematically evaluated using specific inclusion and exclusion criteria. Cochrane methodology was also applied to the results of this study.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.

Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.


Bone & Joint 360
Vol. 7, Issue 3 | Pages 38 - 39
1 Jun 2018
Das A


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives

The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy.

Methods

Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives

Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues.

Methods

A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 127 - 129
1 Jan 2007
Tang TT Lu B Yue B Xie XH Xie YZ Dai KR Lu JX Lou JR

The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats. Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group. Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function


Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives

In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models.

Methods

OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score.


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives

Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear.

Methods

To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives

The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI).

Methods

The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 274 - 281
1 Apr 2018
Collins KH Hart DA Seerattan RA Reimer RA Herzog W

Objectives

Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes.

Methods

A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives

This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model.

Methods

Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR).


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 462 - 466
1 May 1997
Vasudevan PN Vaidyalingam KV Nair PB

In 1895 Trendelenburg described his sign to determine the integrity of hip function. We found the sign to be positive in a patient whose hip was clinically and radiologically normal, and therefore investigated this in other patients. We confirmed that a medial shift of the mechanical axis of the leg below the hip may cause a positive Trendelenburg sign. This has not been previously described


Bone & Joint Research
Vol. 6, Issue 11 | Pages 612 - 618
1 Nov 2017
Yin C Suen W Lin S Wu X Li G Pan X

Objectives

This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in synovial fluid, and their correlations to the severity of disease regarding knee osteoarthritis (OA).

Methods

Knee joint synovial fluid samples were collected from 45 patients with OA of the knee (15 mild, 15 moderate and 15 severe), ten healthy volunteers, ten patients with gouty arthritis, and ten with rheumatoid arthritis. The Kellgren–Lawrence grading (KLG) was used to assess the radiological severity of knee OA, and the patients were stratified into mild (KLG < 2), moderate (KLG = 2), and severe (KLG > 2). The expression of miR-140-3p and miR-140-5p of individual samples was measured by SYBR Green quantitative polymerase chain reaction (PCR) analysis. The expression of miR-140-3p and miR-140-5p was normalised to U6 internal control using the 2-△△CT method. All data were processed using SPSS software.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 276 - 282
1 Mar 2000
Sabo D Brocai DRC Eble M Wannenmacher M Ewerbeck V

We studied the effects of irradiation on the reintegration of autologous osteoarticular grafts over a period of 24 weeks in a canine model. In 16 foxhounds the medial femoral condyle was resected, irradiated and immediately replanted. In the control group resection and replantation were performed without irradiation. Reintegration was assessed by macroscopic analysis, histology, radiography and gait analysis. Reintegration was equal at 12 weeks, but significantly inferior in the irradiated group after 24 weeks with delayed bone remodelling. The articular cartilage showed modest degeneration. Conventional radiography and histology showed corresponding changes. Limb function was adequate but the gait was inferior in the treated group


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 765 - 773
1 Jul 2003
Gupte CM Bull AMJ Thomas RD Amis AA

We have tested the hypothesis that the meniscofemoral ligaments make a significant contribution to resisting anteroposterior and rotatory laxity of the posterior-cruciate-ligament-deficient knee. Eight cadaver human knees were tested for anteroposterior and rotatory laxity in a materials-testing machine. The posterior cruciate ligament (PCL) was then divided, followed by division of the meniscofemoral ligaments (MFLs). Laxity results were obtained for intact, PCL-deficient, and PCL-MFL-deficient knees. Division of the MFLs in the PCL-deficient knee increased posterior laxity between 15° and 90° of flexion. Force-displacement measurements showed that the MFLs contributed 28% to the total force resisting posterior drawer at 90° of flexion in the intact knee, and 70.1% in the PCL-deficient knee. There was no effect on rotatory laxity. This is the first study which shows a function for the MFLs as secondary restraints to posterior tibial translation. The integrity of these structures should be assessed during both imaging and arthroscopic studies of PCL-injured knees since this may affect the diagnosis and management of such injuries


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 292 - 298
1 Mar 2003
Pasque C Noyes FR Gibbons M Levy M Grood E

Techniques for the selective cutting of ligaments in cadaver knees defined the static contributions of the posterolateral structures to external rotation, varus rotation and posterior tibial translation from 0° to 120° of flexion under defined loading conditions. Sectioning of the popliteofibular ligament (PFL) (group 1) produced no significant changes in the limits of the knee movement studied. Sectioning of the PFL and the popliteus tendon (femoral attachment, group 2) produced an increase of only 5° to 6° in external rotation from flexion of 30° to 120° (p < 0.001). Even when other ligaments were sectioned first (group 3), the maximum effect of the PFL was negligible. Our findings show that the popliteus muscle-tendon-ligament complex, lateral collateral ligament, and posterolateral capsular structures function as a unit. No individual structure alone is the primary restraint for the movements studied. Operative reconstruction should address all of the posterolateral structures, since restoration of only a portion may result in residual instability


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives

Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults.

Methods

A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 130 - 134
1 Jan 1999
Alfaro-Adrián J Gill HS Murray DW

Studies using roentgen stereophotogrammetric analysis (RSA) have shown that the femoral components of cemented total hip replacements (THR) migrate distally relative to the bone, but it is not clear whether this occurs at the cement-implant or the cement-bone interface or within the cement mantle. Our aim was to determine where this migration occurred, since this has important implications for the way in which implants function and fail. Using RSA we compared for two years the migration of the tip of the stem with that of the cement restrictor for two different designs of THR, the Exeter and Charnley Elite. We have assumed that if the cement restrictor migrates, then at least part of the cement mantle also migrates. Our results have shown that the Exeter migrates distally three times faster than the Charnley Elite and at different interfaces. With the Exeter migration was at the cement-implant interface whereas with the Charnley Elite there was migration at both the cement-bone and the cement-implant interfaces


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1054 - 1058
1 Sep 2000
Khan U Kakar S Akali A Bentley G McGrouther DA

The formation of restrictive adhesions around the musculotendinous unit after injury is one of the most vexing processes faced by the surgeon. In flexor tendons it has been shown that the synovial tissue is the source of aggressive fibroblasts which contribute to this process. Using a rabbit model, we have examined the effects of treating the synovial sheath with the antimetabolite 5-fluorouracil (5-FU) for five minutes. Inflammatory, proliferative and molecular markers were compared in the response of the treated and control tendons to injury. Compared with a control group we found that the proliferative and inflammatory responses were significantly reduced (p < 0.001) in the treated tendons. Not only was there a reduction in the cellular and cytokine response, but there also was a significant (p < 0.001) reduction in the level of activity of the known pro-scarring agent, transforming growth factor beta 1 (TGF-β1). These pilot studies indicate that the formation of restrictive adhesions may be modulated using a simple single-touch technique in the hope of producing a better return of function


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 902 - 906
1 Sep 1999
Ochi M Iwasa J Uchio Y Adachi N Sumen Y

We examined whether somatosensory evoked potentials (SEPs) were detectable after direct electrical stimulation of injured, reconstructed and normal anterior cruciate ligaments (ACL) during arthroscopy under general anaesthesia. We investigated the position sense of the knee before and after reconstruction and the correlation between the SEP and instability. We found detectable SEPs in all ligaments which had been reconstructed with autogenous semitendinosus and gracilis tendons over the past 18 months as well as in all cases of the normal group. The SEP was detectable in only 15 out of 32 cases in the injured group, although the voltages in the injured group were significantly lower than those of the controls. This was not the case in the reconstructed group. The postoperative position sense in 17 knees improved significantly, but there was no correlation between it and the voltage. The voltage of stable knees was significantly higher than that of the unstable joints. Our findings showed that sensory reinnervation occurred in the reconstructed human ACL and was closely related to the function of the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 148 - 154
1 Jan 1999
Tonino AJ Thèrin M Doyle C

We performed a histological and histomorphometric examination in five cadaver specimens of the femoral and acetabular components and the associated tissue which had been recovered between 3.3 and 6.2 years after primary total hip arthroplasty (THA) using a proximal hydroxyapatite (HA)-coated titanium alloy implant. All had functioned well during the patients’ life. All the stems were fixed in the femur and showed osseointegration of both the proximal and distal parts. The amount of residual HA was greatest in the distal metaphyseal sections, indicating that the rate of bone remodelling may be the main factor causing loss of HA. The level of activity of the patient was the only clinical factor which correlated with loss of coating. The percentage of bone-implant osseointegration was almost constant, regardless of the amount of HA residue, periprosthetic bone density or the time of implantation. HA debris was seldom observed and if present did not cause any adverse or inflammatory reaction. Partial debonding did occur in one case as a result of a polyethylene-induced inflammatory reaction


Bone & Joint 360
Vol. 6, Issue 5 | Pages 42 - 44
1 Oct 2017
Ross A


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 7 | Pages 1060 - 1066
1 Sep 2003
Henderson IJP Tuy B Connell D Oakes B Hettwer WH

In order to determine the usefulness of MRI in assessing autologous chondrocyte implantation (ACI) the first 57 patients (81 chondral lesions) with a 12-month review were evaluated clinically and with specialised MRI at three and 12 months. Improvement 12 months after operation was found subjectively (37.6 to 51.9) and in knee function levels (from 85% International Cartilage Repair Society (ICRS) III/IV to 61% I/II). The International Knee Documentation Committee (IKDC) scores showed an initial deterioration at three months (56% IKDC A/B) but marked improvement at 12 months (88% A/B). The MRI at three months showed 82% of patients with at least 50% defect fill, 59% with a normal or nearly normal signal at repair sites, 71% with a mild or no effusion and 80% with a mild or no underlying bone-marrow oedema. These improved at 12 months to 93%, 93%, 94% and 91%, respectively. The overall MR score at 12 months suggested production of normal or nearly normal cartilage in 82%, corresponding to a subjective improvement in 81% of patients and 88% IKDC A/B scores. Second-look surgery and biopsies in 15 patients (22 lesions) showed a moderate correlation of MRI with visual scoring; 70% of biopsies showed hyaline and hyaline-like cartilage. Thus, MRI at 12 months is a reasonable non-invasive means of assessment of ACI


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 531 - 539
1 May 1998
Goodman SB Huie P Song Y Schurman D Maloney W Woolson S Sibley R

The tissues surrounding 65 cemented and 36 cementless total joint replacements undergoing revision were characterised for cell types by immunohistochemistry and for cytokine expression by in situ hybridisation. We identified three distinct groups of revised implants: loose implants with ballooning radiological osteolysis, loose implants without osteolysis, and well-fixed implants. In the cemented series, osteolysis was associated with increased numbers of macrophages (p = 0.0006), T-lymphocyte subgroups (p = 0.03) and IL-1 (p = 0.02) and IL-6 (p = 0.0001) expression, and in the cementless series with increased numbers of T-lymphocyte subgroups (p = 0.005) and increased TNFα expression (p = 0.04). For cemented implants, the histological, histochemical and cytokine profiles of the interface correlated with the clinical and radiological grade of loosening and osteolysis. Our findings suggest that there are different biological mechanisms of loosening and osteolysis for cemented and cementless implants. T-lymphocyte modulation of macrophage function may be an important interaction at prosthetic interfaces


Bone & Joint Research
Vol. 6, Issue 10 | Pages 590 - 599
1 Oct 2017
Jefferson L Brealey S Handoll H Keding A Kottam L Sbizzera I Rangan A

Objectives

To explore whether orthopaedic surgeons have adopted the Proximal Fracture of the Humerus: Evaluation by Randomisation (PROFHER) trial results routinely into clinical practice.

Methods

A questionnaire was piloted with six orthopaedic surgeons using a ‘think aloud’ process. The final questionnaire contained 29 items and was distributed online to surgeon members of the British Orthopaedic Association and British Elbow and Shoulder Society. Descriptive statistics summarised the sample characteristics and fracture treatment of respondents overall, and grouped them by whether they changed practice based on PROFHER trial findings. Free-text responses were analysed qualitatively for emerging themes using Framework Analysis principles.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 124 - 129
1 Jan 2001
Lofthouse RA Davis JR Frondoza CG Jinnah RH Hungerford DS Hare JM

Caveolae, specialised regions of the cell membrane which have been detected in a wide range of mammalian cells, have not been described in bone cells. They are plasmalemmal invaginations, 50 to 100 nm in size, characterised by the presence of the structural protein, caveolin, which exists as three subtypes. Caveolin-1 and caveolin-2 are expressed in a wide range of cell types whereas caveolin-3 is thought to be a muscle-specific subtype. There is little information on the precise function of caveolae, but it has been proposed that they play an important role in signal transduction. As the principal bone-producing cell, the osteoblast has been widely studied in an effort to understand the signalling pathways by which it responds to extracellular stimuli. Our aim in this study was to identify caveolae and their structural protein caveolin in normal human osteoblasts, and to determine which subtypes of caveolin were present. Confocal microscopy showed staining which was associated with the plasma membrane. Transmission electron microscopy revealed the presence of membrane invaginations of 50 to 100 nm, consistent with the appearance of caveolae. Finally, we isolated protein from these osteoblasts, and performed Western blotting using anti-caveolin primary antibodies. This revealed the presence of caveolin-1 and -2, while caveolin-3 was absent. The identification of these structures and their associated protein may provide a significant contribution to our further understanding of signal transduction pathways in osteoblasts


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 7 | Pages 1056 - 1062
1 Sep 2001
Bono CM Renard R Levine RG Levy AS

Using a dynamic biomechanical model of malunion of the shoulder, we have determined the change in deltoid force required for abduction with various combinations of superior and posterior displacement of fractures of the greater tuberosity of the humerus. We tested eight fresh human cadaver shoulders in a dynamic shoulder-testing apparatus during cycles of glenohumeral abduction from 0° to 90°. The greater tuberosities were osteotomised and stabilised to represent malunion with combinations of superior and posterior displacements of 1 cm and less. The peak force was measured for each displacement in each specimen and statistically compared with values of no displacement using a repeated-measures analysis of variance. The abduction force was significantly increased by 16% (p = 0.006) and 27% (p = 0.0001) by superior displacements of 0.5 cm and 1 cm, respectively, while combined superior and posterior displacement of 1 cm gave an increase in force of 29% (p = 0.001). While treatment criteria for acceptable residual displacement of the greater tuberosity are widely used, there is little information on the direct biomechanical effects of displacement on shoulder mechanics. Although the results of conservative treatment are influenced by a number of factors, including associated injuries, rehabilitation and the pre-existing function of the shoulder, our data suggest that small amounts of residual displacement may alter the balance of forces required to elevate the arm at the glenohumeral joint


Bone & Joint Research
Vol. 6, Issue 7 | Pages 439 - 445
1 Jul 2017
Sekimoto T Ishii M Emi M Kurogi S Funamoto T Yonezawa Y Tajima T Sakamoto T Hamada H Chosa E

Objectives

We have previously investigated an association between the genome copy number variation (CNV) and acetabular dysplasia (AD). Hip osteoarthritis is associated with a genetic polymorphism in the aspartic acid repeat in the N-terminal region of the asporin (ASPN) gene; therefore, the present study aimed to investigate whether the CNV of ASPN is involved in the pathogenesis of AD.

Methods

Acetabular coverage of all subjects was evaluated using radiological findings (Sharp angle, centre-edge (CE) angle, acetabular roof obliquity (ARO) angle, and minimum joint space width). Genomic DNA was extracted from peripheral blood leukocytes. Agilent’s region-targeted high-density oligonucleotide tiling microarray was used to analyse 64 female AD patients and 32 female control subjects. All statistical analyses were performed using EZR software (Fisher’s exact probability test, Pearson’s correlation test, and Student’s t-test).


Bone & Joint Research
Vol. 6, Issue 6 | Pages 385 - 390
1 Jun 2017
Yang Y Lin S Wang B Gu W Li G

Objectives

Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results.

Methods

We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 464 - 471
1 Aug 2017
Li QS Meng FY Zhao YH Jin CL Tian J Yi XJ

Objectives

This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing.

Methods

Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 768 - 773
1 Jul 2000
Bunker TD Reilly J Baird KS Hamblen DL

Frozen shoulder is a chronic fibrosing condition of the capsule of the joint. The predominant cells involved are fibroblasts and myofibroblasts which lay down a dense matrix of type-I and type-III collagen within the capsule. This subsequently contracts leading to the typical features of pain and stiffness. Cytokines and growth factors regulate the growth and function of the fibroblasts of connective tissue and remodelling of the matrix is controlled by the matrix metalloproteinases (MMPs) and their inhibitors. Our aim was to determine whether there was an abnormal expression or secretion of cytokines, growth factors and MMPs in tissue samples from 14 patients with frozen shoulder using the reverse transcription/polymerase chain reaction (RT/PCR) technique and to compare the findings with those in tissue from four normal control shoulders and from five patients with Dupuytren’s contracture. Tissue from frozen shoulders demonstrated the presence of mRNA for a large number of cytokines and growth factors although the frequency was only slightly higher than in the control tissue. The frequency for a positive signal for the proinflammatory cytokines Il-1β and TNF-α and TNF-β, was not as great as in the Dupuytren’s tissue. The presence of mRNA for fibrogenic growth factors was, however, more similar to that obtained in the control and Dupuytren’s tissue. This correlated with the histological findings which in most specimens showed a dense fibrous tissue response with few cells other than mature fibroblasts and with very little evidence of any active inflammatory cell process. Positive expressions of the mRNA for the MMPs were also increased, together with their natural inhibitor TIMP. The notable exception compared with control and Dupuytren’s tissue was the absence of MMP-14, which is known to be a membrane-type MMP required for the activation of MMP-2 (gelatinase A). Understanding the control mechanisms which play a part in the pathogenesis of frozen shoulder may lead to the development of new regimes of treatment for this common, protracted and painful chronic fibrosing condition


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives

After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP).

Methods

Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives

Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs.

Methods

Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS).


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives

Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration.

Methods

MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 179 - 185
1 Mar 2017
Wu JH Thoreson AR Gingery A An KN Moran SL Amadio PC Zhao C

Objectives

The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model.

Methods

Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 315 - 322
1 May 2017
Martinez-Perez M Perez-Jorge C Lozano D Portal-Nuñez S Perez-Tanoira R Conde A Arenas MA Hernandez-Lopez JM de Damborenea JJ Gomez-Barrena E Esbrit P Esteban J

Objectives

Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the in vitro studies did not evaluate bacterial adhesion in the presence of eukaryotic cells, as stated by the ‘race for the surface’ theory. Moreover, the adherence of numerous clinical strains with different initial concentrations has not been studied.

Methods

We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 602 - 609
1 Dec 2016
Muto T Kokubu T Mifune Y Inui A Sakata R Harada Y Takase F Kurosaka M

Objectives

Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß.

Methods

Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 90 - 97
1 Feb 2017
Rajfer RA Kilic A Neviaser AS Schulte LM Hlaing SM Landeros J Ferrini MG Ebramzadeh E Park S

Objectives

We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days.

Materials and Methods

Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 196 - 203
1 Apr 2017
Jin Y Chen X Gao ZY Liu K Hou Y Zheng J

Objectives

This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA).

Methods

Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed paired t-test.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 108 - 112
1 Feb 2017
Itabashi T Narita K Ono A Wada K Tanaka T Kumagai G Yamauchi R Nakane A Ishibashi Y

Objectives

The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery.

Materials and Methods

Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 73 - 81
1 Feb 2017
Ishihara K Okazaki K Akiyama T Akasaki Y Nakashima Y

Objectives

Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts.

Methods

Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 577 - 585
1 Nov 2016
Hase E Sato K Yonekura D Minamikawa T Takahashi M Yasui T

Objectives

This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing.

Materials and Methods

A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives

The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field.

Methods

The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives

Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration.

Methods

Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 314 - 319
1 Jul 2016
Xiao X Hao J Wen Y Wang W Guo X Zhang F

Objectives

The molecular mechanism of rheumatoid arthritis (RA) remains elusive. We conducted a protein-protein interaction network-based integrative analysis of genome-wide association studies (GWAS) and gene expression profiles of RA.

Methods

We first performed a dense search of RA-associated gene modules by integrating a large GWAS meta-analysis dataset (containing 5539 RA patients and 20 169 healthy controls), protein interaction network and gene expression profiles of RA synovium and peripheral blood mononuclear cells (PBMCs). Gene ontology (GO) enrichment analysis was conducted by DAVID. The protein association networks of gene modules were generated by STRING.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 523 - 530
1 Oct 2016
Yuan Y Zhang GQ Chai W Ni M Xu C Chen JY

Objectives

Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage.

Materials and Methods

Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives

The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms.

Methods

Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.