Advertisement for orthosearch.org.uk
Results 1 - 100 of 306
Results per page:
Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims. Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods. Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action. Results. In the LPS-induced bone loss mouse model, the levels of IL-19 in peripheral blood serum and femoral bone marrow suspension were significantly increased. The in vivo results indicated that global IL-19 deletion had no significant effect on RANKL content in the serum and bone marrow, but could increase the content of OPG in serum and femoral bone marrow, suggesting that IL-19 inhibits OPG expression in bone marrow mesenchymal stem cells (BMSCs) and thus increases bone resorption. Conclusion. IL-19 promotes bone resorption by suppressing OPG expression in BMSCs in a LPS-induced bone loss mouse model, which highlights the potential benefits and side effects of IL-19 for future clinical applications. Cite this article: Bone Joint Res 2023;12(11):691–701


Bone & Joint Research
Vol. 11, Issue 5 | Pages 304 - 316
17 May 2022
Kim MH Choi LY Chung JY Kim E Yang WM

Aims

The association of auraptene (AUR), a 7-geranyloxycoumarin, on osteoporosis and its potential pathway was predicted by network pharmacology and confirmed in experimental osteoporotic mice.

Methods

The network of AUR was constructed and a potential pathway predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment. Female ovariectomized (OVX) Institute of Cancer Research mice were intraperitoneally injected with 0.01, 0.1, and 1 mM AUR for four weeks. The bone mineral density (BMD) level was measured by dual-energy X-ray absorptiometry. The bone microstructure was determined by histomorphological changes in the femora. In addition, biochemical analysis of the serum and assessment of the messenger RNA (mRNA) levels of osteoclastic markers were performed.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 129 - 134
1 Jan 1997
Sabokbar A Fujikawa Y Murray DW Athanasou NA

A heavy infiltrate of foreign-body macrophages is commonly seen in the fibrous membrane which surrounds an aseptically loose cemented implant. This is in response to particles of polymethylmethacrylate (PMMA) bone cement and other biomaterials. We have previously shown that monocytes and macrophages responding to particles of bone cement are capable of differentiating into osteoclastic cells which resorb bone. To determine whether the radio-opaque additives barium sulphate (BaSO. 4. ) and zirconium dioxide (ZrO. 2. ) influence this process, particles of PMMA with and without these agents were added to mouse monocytes and cocultured with osteoblast-like cells on bone slices. Osteoclast differentiation, as shown by the presence of the osteoclast-associated enzyme tartrate-resistant acid phosphatase (TRAP) and lacunar bone resorption, was observed in all cocultures. The addition of PMMA alone to these cocultures caused no increase in TRAP expression or bone resorption relative to control cocultures. Adding PMMA particles containing BaSO. 4. or ZrO. 2. , however, caused an increase in TRAP expression and a highly significant increase in bone resorption. Particles containing BaSO. 4. were associated with 50% more bone resorption than those containing ZrO. 2. . Our results suggest that radio-opaque agents in bone cement may contribute to the bone resorption of aseptic loosening by enhancing macrophage-osteoclast differentiation, and that PMMA containing is BaSO. 4. likely to be associated with more osteolysis than that containing ZrO. 2.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 905 - 911
1 Aug 2023
Giannicola G Amura A Sessa P Prigent S Cinotti G

Aims. The aim of this study was to analyze how proximal radial neck resorption (PRNR) starts and progresses radiologically in two types of press-fit radial head arthroplasties (RHAs), and to investigate its clinical relevance. Methods. A total of 97 patients with RHA were analyzed: 56 received a bipolar RHA (Group 1) while 41 received an anatomical implant (Group 2). Radiographs were performed postoperatively and after three, six, nine, and 12 weeks, six, nine, 12, 18, and 24 months, and annually thereafter. PRNR was measured in all radiographs in the four radial neck quadrants. The Mayo Elbow Performance Score (MEPS), the abbreviated version of the Disabilities of the Arm, Shoulder, and Hand questionnaire (QuickDASH), and the patient-assessed American Shoulder and Elbow Surgeons score - Elbow (pASES-E) were used for the clinical assessment. Radiological signs of implant loosening were investigated. Results. The mean follow-up was six years (2 to 14). PRNR started after a mean of 7.5 weeks (SD 2.1) and progressed significantly during the first two years, by the end of which the bone resorption stabilized. PRNR was detected in 81% (n = 45) of patients in Group 1 and 88% (n = 36) in Group 2. The final mean PRNR was 3.0 mm (SD 2.3) in Group 1 and 3.7 mm (SD 2.5) in Group 2. The mean MEPS, QuickDASH, and pASES-E were 95.9 (SD 11.5), 4.4 (SD 9.2), and 94.8 (SD 10.9) in Group 1 and 92.2 (SD 16.2), 9.9 (SD 21.5), and 90.8 (SD 15) in Group 2, respectively. No significant differences were observed between groups in the clinical and radiological outcomes. No correlations were found between PRNR and the clinical results. Conclusion. PRNR after press-fit RHA is a common radiological finding that develops in the first 24 months before stabilizing definitively. PRNR does not affect the clinical results or implant survival in the mid term. Cite this article: Bone Joint J 2023;105-B(8):905–911


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 4 | Pages 632 - 637
1 Aug 1989
Murray D Rae T Rushton N

We investigated the possibility that the macrophages which are seen around implants may stimulate bone resorption and cause loosening. We found that macrophages release mediators that stimulate bone resorption, and that the amount of resorption increased by between 2.5 and 10 times when the macrophages adhered to a foreign surface. This bone resorption depended on the surface energy and roughness of the foreign surface, varying with these physical properties rather than with the chemical nature of the material. It is concluded that loosening of orthopaedic implants is likely to be influenced by the surface energy and roughness of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 6 | Pages 988 - 992
1 Nov 1990
Murray D Rushton N

We investigated in vitro a mechanism by which particulate debris may induce bone resorption and cause implant loosening. We first studied two standard particles: latex, which is considered to be inert, and zymosan, which is inflammatory. Macrophages that phagocytosed either particle became activated, and stimulated 15 times as much bone resorption as did control macrophages. For activation to occur, 100 times more latex than zymosan had to be phagocytosed. We also found that bone cement and polyethylene particles activated macrophages in a similar manner, and that the necessary amounts of these were intermediate between those of latex and zymosan. None of the particles were toxic. It was concluded that implant loosening may result from bone resorption stimulated by mediators released by macrophages that have phagocytosed particles of bone cement or polyethylene


The Journal of Bone & Joint Surgery British Volume
Vol. 60-B, Issue 4 | Pages 575 - 578
1 Nov 1978
Gray D Katz J Speak K

Calvaria from six-day-old infant mice were grown on a grid culture in a chemically defined medium under varying oxygen tensions. Quantitative isotope studies demonstrated a linear association between bone resorption and oxygen tension in the physiological range. This result was supported by histological, histochemical and vital staining experiments. The clinical finding of osteoporosis in areas of hyperaemia could therefore be attributed to a rise in oxygen tension causing increased bone resorption


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 4 | Pages 641 - 646
1 Jul 1996
Aspenberg P Herbertsson P

Using a rat model, we created a bone-to-titanium interface and applied phagocytosable high-density polyethylene pArticles between the bone and implant, either initially or when the interface had matured. No fibrous membrane developed and no bone resorption was found. If sliding movements were initiated at the interface after two weeks, there was formation of a fibrous membrane. The additional application of pArticles did not change the thickness of the membrane, and there were only minor qualitative changes. Creation of a membrane by movement followed by cessation of movement and the application of pArticles caused the membrane to persist, whereas in a pArticle-free control group bone-to-metal contact was re-established. Our findings suggest that mechanical stimuli are of primary importance for prosthetic loosening, and that pArticles may modulate the later stages of the loosening process


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 6 | Pages 865 - 868
1 Nov 1993
Rockborn P Olsson S

We reviewed at a minimum elapsed time of five years a consecutive series of 143 primary Exeter hip replacements in which matt-surfaced femoral stems had been used. Twenty-five patients had died and six stems and two sockets had been revised before follow-up. The remaining 110 hips were all examined clinically and radiographically. In 15 hips there were radiographic signs of definite loosening of the stem and in eight suspected loosening. The acetabulum was loose in four hips. In another eight hips localised bone resorption was present without signs of loosening. Half the patients with loosening or localised bone resorption had mild pain or no pain at all. The late complication rate with the matt-surfaced Exeter femoral stem is unacceptably high


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 767 - 773
1 Jul 2002
Skoglund B Larsson L Aspenberg PA

Wear particles commonly used for experiments may carry adherent endotoxin on their surfaces, which may be responsible for the observed effects. In this study, we attached titanium plates to the tibiae of 20 rats. After osseointegration, endotoxin-contaminated or uncontaminated high-density-polyethylene (HDPE) particles were applied. Contaminated specimens showed a dramatic resorption of bone after seven days but new bone filled the site again at 21 days. Uncontaminated specimens showed no resorption. In 18 rats we implanted intramuscularly discs of ultra-high-molecular-weight polyethylene (UHMWPE) with baseline or excess contamination of endotoxin. Excess endotoxin disappeared within 24 hours and the amount of endotoxin remained at baseline level (contamination from production). Uncontaminated titanium discs did not adsorb endotoxin in vivo. The endotoxin was measured by analytical chemistry. Locally-applied endotoxin stimulated bone resorption similarly to that in experiments with wear particles. Endotoxin on the surface of implants and particles appeared to be inactivated in situ. A clean implant surface did not adsorb endotoxin. Our results suggest that endotoxin adhering to orthopaedic implants is not a major cause for concern


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 117 - 122
1 Jan 1997
van Lenthe GH de Waal Malefijt MC Huiskes R

Inadequate bone stock is often found in revision surgery of femoral components of total knee replacements. Our aim was to test the hypothesis that these remodelling patterns can be explained by stress shielding, and that prosthetic bonding characteristics affect maintenance of bone mass. We made a three-dimensional finite-element model of an average male femur with a cemented femoral knee component. This model was integrated with iterative remodelling procedures. Two extreme prosthetic bonding conditions were analysed and gradual changes in bone density were calculated. The long-term bone loss under the femoral knee component resembled clinical findings which confirms the hypothesis that stress shielding can cause distal femoral bone loss. Our study predicts, contrary to clinical findings, that an equilibrium situation is not reached after two years, but that bone resorption may continue. This hidden bone loss may be so drastic that large reconstructions are needed at the time of revision


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 3 | Pages 456 - 461
1 Apr 2003
Ong SM Taylor GJS

Matrix metalloproteinases (MMPs) may have a role in the process of aseptic loosening. Doxycycline has been shown to inhibit MMPs. Our aim was to investigate the potential pharmacological effect of doxycycline on aseptic loosening. We used radiolabelled mouse calvariae cultured with human interface membrane cells from aseptically loosened hips. Bone resorption was confirmed in this model. The effect of doxycycline was assessed by culturing dead radiolabelled bone discs with cells from the interface membrane with doxycycline. The control group consisted of the same culture system without doxycycline. Supernatant . 45. calcium and the total . 45. calcium remaining in the bone discs at the completion of the culture were used to measure osteolysis. We found that doxycycline can inhibit osteolysis at the interface membrane of aseptically loosened hips. This may have therapeutic implications for the treatment of patients with aseptic loosening of total joint replacements


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims. Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results. Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion. We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males. Cite this article: Bone Joint Res 2024;13(1):28–39


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims. The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI. Methods. Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20). Results. PJI specimens exhibited a higher bone volume, thickened trabeculae, and increased osteoid parameters compared to both control groups, suggesting an accelerated bone turnover with sclerotic microstructure. On the cellular level, osteoblast and osteoclast parameters were markedly increased in the PJI cohort. Furthermore, a positive association between serum (CRP) but not synovial (white blood cell (WBC) count) inflammatory markers and osteoclast indices could be detected. Comparison between different pathogens revealed increased osteoclastic bone resorption parameters without a concomitant increase in osteoblasts in bone specimens from patients with Staphylococcus aureus infection, compared to those with detection of Staphylococcus epidermidis and Cutibacterium spp. Conclusion. This study provides insights into the local bone metabolism in chronic PJI, demonstrating osteosclerosis with high bone turnover. The fact that Staphylococcus aureus was associated with distinctly increased osteoclast indices strongly suggests early surgical treatment to prevent periprosthetic bone alterations. Cite this article: Bone Joint Res 2023;12(10):644–653


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available. Cite this article: Bone Joint J 2024;106-B(10):1100–1110


Bone & Joint Research
Vol. 11, Issue 4 | Pages 239 - 250
20 Apr 2022
Stewart CC O’Hara NN Bzovsky S Bahney CS Sprague S Slobogean GP

Aims. Bone turnover markers (BTMs) follow distinct trends after fractures and limited evidence suggests differential levels in BTMs in patients with delayed healing. The effect of vitamin D, and other factors that influence BTMs and fracture healing, is important to elucidate the use of BTMs as surrogates of fracture healing. We sought to determine whether BTMs can be used as early markers of delayed fracture healing, and the effect of vitamin D on BTM response after fracture. Methods. A total of 102 participants aged 18 to 50 years (median 28 years (interquartile range 23 to 35)), receiving an intramedullary nail for a tibial or femoral shaft fracture, were enrolled in a randomized controlled trial comparing vitamin D. 3. supplementation to placebo. Serum C-terminal telopeptide of type I collagen (CTX; bone resorption marker) and N-terminal propeptide of type I procollagen (P1NP; bone formation marker) were measured at baseline, six weeks, and 12 weeks post-injury. Clinical and radiological fracture healing was assessed at three months. Results. CTX and P1NP concentrations peaked at six weeks in all groups. Elevated six-week CTX and P1NP were associated with radiological healing at 12 weeks post-injury (odds ratio (OR) 10.5; 95% confidence interval 2.71 to 53.5, p = 0.002). We found no association between CTX or P1NP and functional healing. Baseline serum 25(OH)D showed a weak inverse relationship with P1NP (p = 0.036) and CTX (p = 0.221) at 12 weeks, but we observed no association between vitamin D supplementation and either BTM. Conclusion. Given the association between six-week BTM concentrations and three-month radiological fracture healing, CTX and P1NP appear to be potential surrogate markers of fracture healing. Cite this article: Bone Joint Res 2022;11(4):239–250


Bone & Joint Research
Vol. 7, Issue 10 | Pages 548 - 560
1 Oct 2018
Qayoom I Raina DB Širka A Tarasevičius Š Tägil M Kumar A Lidgren L

During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions. Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2


Bone & Joint Research
Vol. 10, Issue 4 | Pages 237 - 249
1 Apr 2021
Chen X Chen W Aung ZM Han W Zhang Y Chai G

Aims. LY3023414 is a novel oral phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor designed for advanced cancers, for which a phase II clinical study was completed in March 2020; however, little is known about its effect on bone modelling/remodelling. In this study, we aimed to explore the function of LY3023414 in bone modelling/remodelling. Methods. The function of LY3023414 was explored in the context of osteogenesis (bone formation by osteoblasts) and osteoclastogenesis (osteoclast formation and bone resorption). Murine preosteoblast MC3T3-E1 cell line and murine bone marrow-derived macrophage cells (BMMs) were subjected to different treatments. An MTS cell proliferation assay was used to examine the cytotoxicity. Thereafter, different induction conditions were applied, such as MCSF and RANKL for osteoclastogenesis and osteogenic media for osteogenesis. Specific staining, a bone resorption assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were subsequently used to evaluate the effect of LY3023414. Moreover, small interfering RNA (siRNA) was applied to knockdown Akt1 or Akt2 for further validation. Lastly, western blot was used to examine the exact mechanism of action. Results. LY3023414 attenuated PI3K/protein kinase B (Akt)/GSK3-dependent activation of β-catenin and nuclear factor-activated T cell 1 (NFATc1) during osteogenesis and osteoclastogenesis, respectively. LY3023414 mainly inhibited osteoclast formation instead of mature osteoclast function. Moreover, it suppressed osteogenesis both in the early stage of differentiation and late stage of calcification. Similarly, gene knockdown of Akt isoforms by siRNA downregulated osteogenic and osteoclastogenic processes, indicating that Akt1 and Akt2 acted synergistically. Conclusion. LY3023414 can suppress osteogenesis and osteoclastogenesis through inhibition of the PI3K/Akt/GSK3 signalling pathway, which highlights the potential benefits and side effects of LY3023414 for future clinical applications. Cite this article: Bone Joint Res 2021;10(4):237–249


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1082 - 1087
1 Aug 2020
Yiğit Ş Arslan H Akar MS Şahin MA

Aims. Osteopetrosis (OP) is a rare hereditary disease that causes reduced bone resorption and increased bone density as a result of osteoclastic function defect. Our aim is to review the difficulties, mid-term follow-up results, and literature encountered during the treatment of OP. Methods. This is a retrospective and observational study containing data from nine patients with a mean age of 14.1 years (9 to 25; three female, six male) with OP who were treated in our hospital between April 2008 and October 2018 with 20 surgical procedures due to 17 different fractures. Patient data included age, sex, operating time, length of stay, genetic type of the disease, previous surgery, fractures, complications, and comorbidity. Results. The mean follow-up period was 92.5 months (25 to 140). Bony union was observed in all of our patients. Osteomyelitis developed in two patients with femoral shaft fractures, and two patients had peri-implant stress fractures. Conclusion. Treatment of fractures in OP patients is difficult, healing is protracted, and the risk of postoperative infection is high. In children and young adults with OP who have open medullary canal and the epiphyses are not closed, fractures can be treated with surgical techniques such as intramedullary titanium elastic nail (TENS) technique or fixation with Kirschner (K)-wire. Cite this article: Bone Joint J 2020;102-B(8):1082–1087


Bone & Joint Research
Vol. 7, Issue 5 | Pages 373 - 378
1 May 2018
Johnson-Lynn SE McCaskie AW Coll AP Robinson AHN

Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis. Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14). Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process. An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking. Cite this article: S. E. Johnson-Lynn, A. W. McCaskie, A. P. Coll, A. H. N. Robinson. Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy. Bone Joint Res 2018;7:373–378. DOI: 10.1302/2046-3758.75.BJR-2017-0334.R1


Bone & Joint Research
Vol. 9, Issue 7 | Pages 333 - 340
1 Jul 2020
Mumith A Coathup M Edwards TC Gikas P Aston W Blunn G

Aims. Limb salvage in bone tumour patients replaces the bone with massive segmental prostheses where achieving bone integration at the shoulder of the implant through extracortical bone growth has been shown to prevent loosening. This study investigates the effect of multidrug chemotherapy on extracortical bone growth and early radiological signs of aseptic loosening in patients with massive distal femoral prostheses. Methods. A retrospective radiological analysis was performed on adult patients with distal femoral arthroplasties. In all, 16 patients were included in the chemotherapy group with 18 patients in the non-chemotherapy control group. Annual radiographs were analyzed for three years postoperatively. Dimensions of the bony pedicle, osseointegration of the hydroxyapatite (HA) collar surface, bone resorption at the implant shoulder, and radiolucent line (RLL) formation around the cemented component were analyzed. Results. A greater RLL score (p = 0.041) was observed at three years postoperatively, with those receiving chemotherapy showing greater radiological loosening compared with those not receiving chemotherapy. Chemotherapy patients experience osteolysis at the shoulder of the ingrowth collar over time (p < 0.001) compared with non-chemotherapy patients where osteolysis was not observed. A greater median percentage integration of the collar surface was observed in the non-chemotherapy group (8.6%, interquartile range (IQR) 0.0% to 37.9%; p = 0.021) at three years. Bone growth around the collar was observed in both groups, and no statistical difference in amount of extracortical bony bridging was seen. Conclusion. Multidrug chemotherapy affects the osseointegration of ingrowth collars and accelerates signs of radiological loosening. This may increase the risk of aseptic loosening in patients with massive segmental implants used to treat bone cancer. Cite this article: Bone Joint Res 2020;9(7):333–340


Bone & Joint Research
Vol. 11, Issue 11 | Pages 763 - 776
1 Nov 2022
Zhang Y Jiang B Zhang P Chiu SK Lee MH

Aims

Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent matrix metalloproteinases (MMP) and A disintegrin and metalloproteinases (ADAM) involved in extracellular matrix modulation. The present study aims to develop the TIMPs as biologics for osteoclast-related disorders.

Methods

We examine the inhibitory effect of a high affinity, glycosyl-phosphatidylinositol-anchored TIMP variant named ‘T1PrαTACE’ on receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.

Cite this article: Bone Joint Res 2024;13(9):462–473.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 677 - 690
1 Nov 2023
Wang X Jiang W Pan K Tao L Zhu Y

Aims

Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis.

Methods

The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


The Journal of Bone & Joint Surgery British Volume
Vol. 48-B, Issue 3 | Pages 526 - 531
1 Aug 1966
Tapp E

1. In growing rats oestrogen, cortisone and thyroxine in high doses suppress bone formation, and this effect is probably part of a general suppression of body growth. 2. Growth hormone and thyroxine in small doses stimulate both body growth and bone formation. 3. Testosterone has no effect on bone formation. 4. Oestrogen and cortisone suppress bone resorption. The effect of cortisone may be modified in conditions of calcium depletion. 5. Thyroxine appears on the other hand to increase bone resorption. 6. Testosterone has no effect on bone resorption


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 439 - 452
13 Jul 2022
Sun Q Li G Liu D Xie W Xiao W Li Y Cai M

Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain.

Cite this article: Bone Joint Res 2022;11(7):439–452.


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 147 - 154
20 Feb 2023
Jia Y Qi X Ma M Cheng S Cheng B Liang C Guo X Zhang F

Aims

Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD.

Methods

We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects.


Aims

This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night.

Methods

In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 426 - 438
20 Jul 2022
Luo P Wang P Xu J Hou W Xu P Xu K Liu L

Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps.

Cite this article: Bone Joint Res 2022;11(7):426–438.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 932 - 936
1 Jul 2011
Mahmoud M Koptan W

Ununited fractures of the scaphoid with extensive bone resorption are usually treated by bone grafting and internal fixation, using either an open or a minimally invasive technique. We studied the feasibility of percutaneous fixation without bone grafting in a consecutive series of 27 patients with established nonunion of an undisplaced fracture of the scaphoid and extensive local resorption of bone. They were treated by a single surgeon with rigid fixation alone, using a headless cannulated screw inserted through a volar percutaneous technique. Clinical examination, standard radiographs and CT confirmed that the fracture had united in all patients at a mean of 11.6 weeks (8 to 16), and that their functional scores had improved. We concluded that extensive resorption at the fracture site is not an absolute indication for bone grafting, and that percutaneous fixation alone will eventually produce healing of ununited undisplaced fractures of the scaphoid regardless of the size of the gap


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 610 - 621
1 Jun 2023
Prodromidis AD Chloros GD Thivaios GC Sutton PM Pandit H Giannoudis PV Charalambous CP

Aims

Loosening of components after total knee arthroplasty (TKA) can be associated with the development of radiolucent lines (RLLs). The aim of this study was to assess the rate of formation of RLLs in the cemented original design of the ATTUNE TKA and their relationship to loosening.

Methods

A systematic search was undertaken using the Cochrane methodology in three online databases: MEDLINE, Embase, and CINAHL. Studies were screened against predetermined criteria, and data were extracted. Available National Joint Registries in the Network of Orthopaedic Registries of Europe were also screened. A random effects model meta-analysis was undertaken.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 252 - 259
1 May 2022
Cho BW Kang K Kwon HM Lee W Yang IH Nam JH Koh Y Park KK

Aims

This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA).

Methods

3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 118 - 124
1 May 2024
Macheras GA Argyrou C Tzefronis D Milaras C Tsivelekas K Tsiamtsouris KG Kateros K Papadakis SA

Aims

Accurate diagnosis of chronic periprosthetic joint infection (PJI) presents a significant challenge for hip surgeons. Preoperative diagnosis is not always easy to establish, making the intraoperative decision-making process crucial in deciding between one- and two-stage revision total hip arthroplasty (THA). Calprotectin is a promising point-of-care novel biomarker that has displayed high accuracy in detecting PJI. We aimed to evaluate the utility of intraoperative calprotectin lateral flow immunoassay (LFI) in THA patients with suspected chronic PJI.

Methods

The study included 48 THAs in 48 patients with a clinical suspicion of PJI, but who did not meet European Bone and Joint Infection Society (EBJIS) PJI criteria preoperatively, out of 105 patients undergoing revision THA at our institution for possible PJI between November 2020 and December 2022. Intraoperatively, synovial fluid calprotectin was measured with LFI. Cases with calprotectin levels ≥ 50 mg/l were considered infected and treated with two-stage revision THA; in negative cases, one-stage revision was performed. At least five tissue cultures were obtained; the implants removed were sent for sonication.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims

The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model.

Methods

In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 83 - 90
19 Feb 2024
Amri R Chelly A Ayedi M Rebaii MA Aifa S Masmoudi S Keskes H

Aims

The present study investigated receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), and Runt-related transcription factor 2 (RUNX2) gene expressions in giant cell tumour of bone (GCTB) patients in relationship with tumour recurrence. We also aimed to investigate the influence of CpG methylation on the transcriptional levels of RANKL and OPG.

Methods

A total of 32 GCTB tissue samples were analyzed, and the expression of RANKL, OPG, and RUNX2 was evaluated by quantitative polymerase chain reaction (qPCR). The methylation status of RANKL and OPG was also evaluated by quantitative methylation-specific polymerase chain reaction (qMSP).


Bone & Joint Research
Vol. 12, Issue 10 | Pages 657 - 666
17 Oct 2023
Sung J Barratt KR Pederson SM Chenu C Reichert I Atkins GJ Anderson PH Smitham PJ

Aims

Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy.

Methods

Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq).


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1110 - 1115
1 Aug 2006
Ong KL Kurtz SM Manley MT Rushton N Mohammed NA Field RE

The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented versus uncemented fixation showed no advantage of either with regard to bone loading. When the Birmingham hip resurfacing femoral component was fixed to bone, proximal femoral stresses and strains were non-physiological. Bone resorption was predicted in the inferomedial and superolateral bone within the Birmingham hip resurfacing shell. Resorption was limited to the superolateral region when the stem was not fixed. The increased bone strain observed adjacent to the distal stem should stimulate an increase in bone density at that location. The remodelling of bone seen during revision of failed Birmingham hip resurfacing implants appears to be consistent with the predictions of our finite element analysis


Bone & Joint Open
Vol. 4, Issue 5 | Pages 306 - 314
3 May 2023
Rilby K Mohaddes M Kärrholm J

Aims

Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems.

Methods

In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis, dual-energy X-ray absorptiometry, and conventional radiography. A total of 39 patients attended the follow-up visit at two years (primary outcome) and 35 patients at five years. The primary outcome was which hip the patient considered to have the best function at two years.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims

Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs).

Methods

A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy.


Bone & Joint Research
Vol. 12, Issue 6 | Pages 375 - 386
12 Jun 2023
Li Z

Aims

Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP.

Methods

Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims

This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision.

Methods

A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 826 - 834
17 Nov 2022
Kawai T Nishitani K Okuzu Y Goto K Kuroda Y Kuriyama S Nakamura S Matsuda S

Aims

The preventive effects of bisphosphonates on articular cartilage in non-arthritic joints are unclear. This study aimed to investigate the effects of oral bisphosphonates on the rate of joint space narrowing in the non-arthritic hip.

Methods

We retrospectively reviewed standing whole-leg radiographs from patients who underwent knee arthroplasties from 2012 to 2020 at our institute. Patients with previous hip surgery, Kellgren–Lawrence grade ≥ II hip osteoarthritis, hip dysplasia, or rheumatoid arthritis were excluded. The rate of hip joint space narrowing was measured in 398 patients (796 hips), and the effects of the use of bisphosphonates were examined using the multivariate regression model and the propensity score matching (1:2) model.


Aims

Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation.

Methods

Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims

Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing.

Methods

A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims

cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect.

Methods

CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 837 - 843
1 Sep 1997
Van Der Vis HM Marti RK Tigchelaar W Schüller HM Van Noorden CJF

We examined the cellular responses to various particles injected into the knees and the intramedullary femoral cavities of rats in the presence of polymethyl-methacrylate (PMMA) plugs. The intra-articular particles were mainly ingested by synovial fibroblasts. Increased numbers of macrophages were not detected and there was only a slight increase in synovial thickness. Cellular responses in the intramedullary space were similarly mild and bone resorption around the PMMA plug did not occur. Bone formation was inhibited only by polyethylene particles. In contrast to current views, our study shows that wear particles per se do not initiate bone resorption


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 1 | Pages 43 - 46
1 Jan 1991
Maistrelli G Fornasier V Binnington A McKenzie K Sessa V Harrington I

The purpose of this study was to determine the biological effects of the elastic modulus of the femoral stem in canine hip arthroplasty. Cementless total hip arthroplasty was performed in 12 dogs, six had a low elastic modulus polyacetal resin stem and six had a high modulus stainless steel stem. The components were otherwise similar. At six and 12 months after operation, radiographic and histomorphometric analysis showed that those with steel implants had more cortical porosity than did the other group (p less than 0.01). We suggest that the elastic modulus of the implant is an important factor in controlling cortical bone resorption. A low modulus femoral prosthesis can significantly decrease bone resorption which might otherwise eventually lead to implant failure


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 967 - 971
1 Jul 2006
Westhoff B Krauspe R Kalke AE Hermsen D Kowall B Willers R Schneider U

Our aim was to investigate the relationship between urinary excretion of deoxypyridinoline (DPD) as a marker of bone resorption, and Perthes’ disease. There were 39 children with Perthes’ disease in the florid stage who collected first-morning urine samples at regular intervals of at least three months. The level of urinary DPD was analysed by chemiluminescence immunoassay and was correlated with the radiological stage of the disease as classified by Waldenström, and the severity of epiphyseal involvement according to the classification systems of Catterall and Herring. The urinary DPD levels of a group of 44 healthy children were used as a control. The median urinary DPD/creatinine (CREA) ratio was significantly reduced (p < 0.0001) in the condensation stage and increased to slightly elevated values at the final stage (p = 0.05) when compared with that of the control group. Herring-C patients showed significantly lower median DPD/CREA ratios than Herring-B patients (p = 0.03). The significantly decreased median DPD/CREA ratio in early Perthes’ disease indicated a reduced bone turnover and supports the theory of a systemic aetiology. Urinary levels of DPD may therefore be used to monitor the course of Perthes’ disease


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 126 - 130
1 Jan 2000
Kurth AHA Kim S Sedlmeyer I Hovy L Bauss F

Cancer-induced bone diseases are often associated with increased bone resorption and pathological fractures. In recent years, osteoprotective agents such as bisphosphonates have been studied extensively and have been shown to inhibit cancer-related bone resorption in experimental and clinical studies. The third-generation bisphosphonate, ibandronate (BM 21.0955), is a potent compound for controlling tumour osteolysis and hypercalcaemia in rats bearing Walker 256 carcinosarcoma. We have studied the effect of ibandronate given as an interventional treatment on bone strength and bone loss after the onset of tumour growth in bone. Our results suggest that it is capable of preserving bone quality in rats bearing Walker 256 carcinosarcoma cells. Since other bisphosphonates have produced comparable results in man after their success in the Walker 256 animal models our findings suggest that ibandronate may be a powerful treatment for maintaining skeletal integrity in patients with metastatic bone disease


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 2 | Pages 185 - 189
1 May 1981
Dekel S Lenthall G Francis M

The release of prostaglandins E and F from the tibiae of rabbits and the surrounding muscle in vitro after fracture and pinning, or pinning alone, has been compared to the release from unoperated tissues. The fractured tibiae released significantly more prostaglandins E and F than the control tibiae three to 14 days after operation. The pinned tibiae also released more of the two prostaglandins, although this was significant only after 14 days. Consequently it was only around the third day that the fractured tibiae released significantly more prostaglandin E than the tibiae which had been pinned, but not fractured. Similar results were obtained for the release from the muscles surrounding the tibiae. Prostaglandins are important mediators of inflammation as well as potent stimulators of bone resorption. Their increased formation in response to fracture and pinning may stimulate the vascular changes, bone resorption and the proliferation of osteogenic cells observed after trauma to bone


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 629 - 633
1 May 2006
Ha K Lee J Kim K Chon J

We present the clinical and radiological results of percutaneous vertebroplasty in the treatment of 58 vertebral compression fractures in 51 patients at a minimum follow-up of two years. Group 1 consisted of 39 patients, in whom there was no associated intravertebral cleft, whilst group 2 comprised 12 patients with an intravertebral cleft. The Oswestry disability index (ODI) and visual analogue scale (VAS) scores were recorded prospectively. The radiological evidence of kyphotic deformity, vertebral height, leakage of cement and bone resorption around the cement were studied restrospectively, both before and after operation and at the final follow-up. The ODI and VAS scores in both groups decreased after treatment, but the mean score in group 2 was higher than that in group 1 (p = 0.02 (ODI), p = 0.02 (VAS)). There was a greater initial correction of the kyphosis in group 2 than in group 1, although the difference was not statistically significant. However, loss of correction was greater in group 2. Leakage of cement was seen in 24 (41.4%) of 58 vertebrae (group 1, 32.6% (15 of 46); group 2, 75% (9 of 12)), mainly of type B through the basal vertebral vein in group 1 and of type C through the cortical defect in group 2. Resorption of bone around the cement was seen in three vertebrae in group 2 and in one in group 1. There were seven adjacent vertebral fractures in group 1 and one in group 2. Percutaneous vertebroplasty is an effective treatment for osteoporotic compression fractures with or without an intravertebral cleft. Nonetheless, higher rates of complications related to the cement must be recognised in patients in the presence of an intravertebral cleft


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1202 - 1206
1 Nov 2003
Fiorito S Magrini L Goalard C

We investigated the circulating levels of the main cytokines involved in bone resorption (IL-1β, IL-6, TNF-α), prostaglandins (PGE. 2. ) and metalloproteases (MMP-1), as possible early markers of osteolysis, in the serum of eight patients with periprosthetic osteolysis and ten patients without osteolysis. All had received a cementless hip prosthesis (ABG-1). We also assessed the serum levels of IL-11 and TGF-β anti-inflammatory cytokines exerting protective effect on bone resorption. The mean serum levels of IL-1β, IL-6, TNF-α, TGF-β, MMP-1, and PGE. 2. in patients with periprosthetic osteolysis did not differ significantly from those of patients without osteolysis or from those of normal controls. IL-11 serum levels were not detectable at all in any of the patients, while they were detected within normal reference values in the control subjects (significant inverse correlation). We believe that circulating cytokines cannot be regarded as markers of osteolysis, a condition characterised by a local inflammation without systemic signs of inflammation. On the contrary, the undetectable levels of IL-11 in implanted patients could provide evidence for a lack of balance between pro- and anti-inflammatory cytokines in these patients


Bone & Joint Research
Vol. 11, Issue 5 | Pages 327 - 341
23 May 2022
Alagboso FI Mannala GK Walter N Docheva D Brochhausen C Alt V Rupp M

Aims

Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy.

Methods

The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 525 - 530
1 Apr 2011
Tobita K Ohnishi I Matsumoto T Ohashi S Bessho M Kaneko M Matsuyama J Nakamura K

We evaluated the effect of low-intensity pulsed ultrasound stimulation (LIPUS) on the remodelling of callus in a rabbit gap-healing model by bone morphometric analyses using three-dimensional quantitative micro-CT. A tibial osteotomy with a 2 mm gap was immobilised by rigid external fixation and LIPUS was applied using active translucent devices. A control group had sham inactive transducers applied. A region of interest of micro-CT was set at the centre of the osteotomy gap with a width of 1 mm. The morphometric parameters used for evaluation were the volume of mineralised callus (BV) and the volumetric bone mineral density of mineralised tissue (mBMD). The whole region of interest was measured and subdivided into three zones as follows: the periosteal callus zone (external), the medullary callus zone (endosteal) and the cortical gap zone (intercortical). The BV and mBMD were measured for each zone. In the endosteal area, there was a significant increase in the density of newly formed callus which was subsequently diminished by bone resorption that overwhelmed bone formation in this area as the intramedullary canal was restored. In the intercortical area, LIPUS was considered to enhance bone formation throughout the period of observation. These findings indicate that LIPUS could shorten the time required for remodelling and enhance the mineralisation of callus


Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims

We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism.

Methods

Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia.

Methods

In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 892 - 900
1 Aug 2000
Neale SD Fujikawa Y Sabokbar A Gundle R Murray DW Graves SE Howie DW Athanasou NA

Mononuclear osteoclast precursors are present in the wear-particle-associated macrophage infiltrate found in the membrane surrounding loose implants. These cells are capable of differentiating into osteoclastic bone-resorbing cells when co-cultured with the rat osteoblast-like cell line, UMR 106, in the presence of 1,25(OH). 2. vitamin D. 3. In order to develop an in vitro model of osteoclast differentiation which more closely parallels the cellular microenvironment at the bone-implant interface in situ, we determined whether osteoblast-like human bone-derived cells were capable of supporting the differentiation of osteoclasts from arthroplasty-derived cells and analysed the humoral conditions required for this to occur. Long-term co-culture of arthroplasty-derived cells and human trabecular-bone-derived cells (HBDCs) resulted in the formation of numerous tartrate-resistant-acid-phosphatase (TRAP) and vitronectin-receptor (VNR)-positive multinucleated cells capable of extensive resorption of lacunar bone. The addition of 1,25(OH). 2. vitamin D. 3. was not required for the formation of osteoclasts and bone resorption. During the formation there was release of substantial levels of M-CSF and PGE. 2. Exogenous PGE. 2. (10. −8. to 10. −6. M) was found to stimulate strongly the resorption of osteoclastic bone. Our study has shown that HBDCs are capable of supporting the formation of osteoclasts from mononuclear phagocyte precursors present in the periprosthetic tissues surrounding a loose implant. The release of M-CSF and PGE. 2. by activated cells at the bone-implant interface may be important for the formation of osteoclasts at sites of pathological bone resorption associated with aseptic loosening


Bone & Joint Research
Vol. 11, Issue 7 | Pages 465 - 476
13 Jul 2022
Li MCM Chow SK Wong RMY Chen B Cheng JCY Qin L Cheung W

Aims

There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV.

Methods

A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 362 - 370
9 Jun 2022
Zhou J He Z Cui J Liao X Cao H Shibata Y Miyazaki T Zhang J

Aims

Osteoarthritis (OA) is a common degenerative joint disease. The osteocyte transcriptome is highly relevant to osteocyte biology. This study aimed to explore the osteocyte transcriptome in subchondral bone affected by OA.

Methods

Gene expression profiles of OA subchondral bone were used to identify disease-relevant genes and signalling pathways. RNA-sequencing data of a bone loading model were used to identify the loading-responsive gene set. Weighted gene co-expression network analysis (WGCNA) was employed to develop the osteocyte mechanics-responsive gene signature.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 619 - 628
27 Sep 2021
Maestro-Paramio L García-Rey E Bensiamar F Saldaña L

Aims

To investigate whether idiopathic osteonecrosis of the femoral head (ONFH) is related to impaired osteoblast activities.

Methods

We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head and the intertrochanteric region of patients with idiopathic ONFH, or from the intertrochanteric region of patients with osteoarthritis (OA), and compared their viability, mineralization capacity, and secretion of paracrine factors.


Aims

The aim of this study was to compare the mid-term patient-reported outcome, bone remodelling, and migration of a short stem (Collum Femoris Preserving; CFP) with a conventional uncemented stem (Corail).

Methods

Of 81 patients who were initially enrolled, 71 were available at five years’ follow-up. The outcomes at two years have previously been reported. The primary outcome measure was the clinical result assessed using the Oxford Hip Score (OHS). Secondary outcomes were the migration of the stem, measured using radiostereometric analysis (RSA), change of bone mineral density (BMD) around the stem, the development of radiolucent lines, and additional patient-reported outcome measures (PROMs).


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1292 - 1300
1 Jul 2021
Märtens N Heinze M Awiszus F Bertrand J Lohmann CH Berth A

Aims

The purpose of this study was to compare clinical results, long-term survival, and complication rates of stemless shoulder prosthesis with stemmed anatomical shoulder prostheses for treatment of osteoarthritis and to analyze radiological bone changes around the implants during follow-up.

Methods

A total of 161 patients treated with either a stemmed or a stemless shoulder arthroplasty for primary osteoarthritis of the shoulder were evaluated with a mean follow-up of 118 months (102 to 158). The Constant score (CS), the Disabilities of the Arm, Shoulder and Hand (DASH) score, and active range of motion (ROM) were recorded. Radiological analysis for bone adaptations was performed by plain radiographs. A Kaplan-Meier survivorship analysis was calculated and complications were noted.


Bone & Joint Open
Vol. 3, Issue 3 | Pages 261 - 267
22 Mar 2022
Abe S Kashii M Shimada T Suzuki K Nishimoto S Nakagawa R Horiki M Yasui Y Namba J Kuriyama K

Aims

Low-energy distal radius fractures (DRFs) are the most common upper arm fractures correlated with bone fragility. Vitamin D deficiency is an important risk factor associated with DRFs. However, the relationship between DRF severity and vitamin D deficiency is not elucidated. Therefore, this study aimed to identify the correlation between DRF severity and serum 25-hydroxyvitamin-D level, which is an indicator of vitamin D deficiency.

Methods

This multicentre retrospective observational study enrolled 122 female patients aged over 45 years with DRFs with extension deformity. DRF severity was assessed by three independent examiners using 3D CT. Moreover, it was categorized based on the AO classification, and the degree of articular and volar cortex comminution was evaluated. Articular comminution was defined as an articular fragment involving three or more fragments, and volar cortex comminution as a fracture in the volar cortex of the distal fragment. Serum 25-hydroxyvitamin-D level, bone metabolic markers, and bone mineral density (BMD) at the lumbar spine, hip, and wrist were evaluated six months after injury. According to DRF severity, serum 25-hydroxyvitamin-D level, parameters correlated with bone metabolism, and BMD was compared.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 200 - 209
1 Apr 2022
Liu YD Liu JF Liu B

Aims

The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development.

Methods

Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot.


Bone & Joint Research
Vol. 11, Issue 1 | Pages 26 - 28
20 Jan 2022
Ma M Tan Z Li W Zhang H Liu Y Yue C


Bone & Joint 360
Vol. 10, Issue 5 | Pages 7 - 10
1 Oct 2021
Morris DLJ Cresswell T Espag M Tambe AA Clark DI Ollivere BJ


Bone & Joint Research
Vol. 10, Issue 8 | Pages 488 - 497
10 Aug 2021
Cleemann R Sorensen M West A Soballe K Bechtold JE Baas J

Aims

We wanted to evaluate the effects of a bone anabolic agent (bone morphogenetic protein 2 (BMP-2)) on an anti-catabolic background (systemic or local zoledronate) on fixation of allografted revision implants.

Methods

An established allografted revision protocol was implemented bilaterally into the stifle joints of 24 canines. At revision surgery, each animal received one BMP-2 (5 µg) functionalized implant, and one raw implant. One group (12 animals) received bone graft impregnated with zoledronate (0.005 mg/ml) before impaction. The other group (12 animals) received untreated bone graft and systemic zoledronate (0.1 mg/kg) ten and 20 days after revision surgery. Animals were observed for an additional four weeks before euthanasia.


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 160 - 165
1 Feb 2016
Farrier AJ C. Sanchez Franco L Shoaib A Gulati V Johnson N Uzoigwe CE Choudhury MZ

The ageing population and an increase in both the incidence and prevalence of cancer pose a healthcare challenge, some of which is borne by the orthopaedic community in the form of osteoporotic fractures and metastatic bone disease. In recent years there has been an increasing understanding of the pathways involved in bone metabolism relevant to osteoporosis and metastases in bone. Newer therapies may aid the management of these problems. One group of drugs, the antibody mediated anti-resorptive therapies (AMARTs) use antibodies to block bone resorption pathways. This review seeks to present a synopsis of the guidelines, pharmacology and potential pathophysiology of AMARTs and other new anti-resorptive drugs. . We evaluate the literature relating to AMARTs and new anti-resorptives with special attention on those approved for use in clinical practice. Denosumab, a monoclonal antibody against Receptor Activator for Nuclear Factor Kappa-B Ligand. It is the first AMART approved by the National Institute for Health and Clinical Excellence and the US Food and Drug Administration. Other novel anti-resorptives awaiting approval for clinical use include Odanacatib. Denosumab is indicated for the treatment of osteoporosis and prevention of the complications of bone metastases. Recent evidence suggests, however, that denosumab may have an adverse event profile similar to bisphosphonates, including atypical femoral fractures. It is, therefore, essential that orthopaedic surgeons are conversant with these medications and their safe usage. . Take home message: Denosumab has important orthopaedic indications and has been shown to significantly reduce patient morbidity in osteoporosis and metastatic bone disease. Cite this article: Bone Joint J 2016;98-B:160–5


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 376 - 385
1 Mar 2022
Gramlich Y Hofmann L Kress S Ruckes C Kemmerer M Klug A Hoffmann R Kremer M

Aims

This study compared the cobalt and chromium serum ion concentration of patients treated with two different metal-on-metal (MoM) hinged total knee arthroplasty (TKA) systems, as well as a titanium nitride (TiN)-coated variant.

Methods

A total of 63 patients (65 implants) were treated using either a MoM-coated (n = 29) or TiN-coated (n = 7) hinged TKA (GenuX mobile bearing, MUTARS; Implantcast, Germany) versus the BPKS (Brehm, Germany) hinged TKA (n = 27), in which the weight placed on the MoM hinge is diffused through a polyethylene (PE) inlay, reducing the direct load on the MoM hinge. Serum cobalt and chromium ion concentrations were assessed after minimum follow-up of 12 months, as well as functional outcome and quality of life.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 530 - 535
1 Mar 2021
Giannicola G Castagna V Villani C Gumina S Scacchi M

Aims

It has been hypothesized that proximal radial neck resorption (PRNR) following press-fit radial head arthroplasty (RHA) is due to stress-shielding. We compared two different press-fit stems by means of radiographs to investigate whether the shape and size of the stems are correlated with the degree of PRNR.

Methods

The radiographs of 52 RHAs were analyzed both at 14 days postoperatively and after two years. A cylindrical stem and a conical stem were implanted in 22 patients (group 1) and 30 patients (group 2), respectively. The PRNR was measured in the four quadrants of the radial neck and the degree of stem filling was calculated by analyzing the ratio between the prosthetic stem diameter (PSD) and the medullary canal diameter (MCD) at the proximal portion of the stem (level A), halfway along the stem length (level B), and distally at the stem tip (level C).


Bone & Joint Research
Vol. 10, Issue 3 | Pages 188 - 191
1 Mar 2021
Nicholson T Scott A Newton Ede M Jones SW


Bone & Joint Research
Vol. 10, Issue 11 | Pages 734 - 741
1 Nov 2021
Cheng B Wen Y Yang X Cheng S Liu L Chu X Ye J Liang C Yao Y Jia Y Zhang F

Aims

Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and BMD.

Methods

A total of 3,321 independent loci of gut microbiota were used to calculate the individual polygenic risk score (PRS) for 114 gut microbiota-related traits. The individual genotype data were obtained from UK Biobank cohort. Linear regressions were then conducted to evaluate the possible association of gut microbiota with L1-L4 BMD (n = 4,070), total BMD (n = 4,056), and femur total BMD (n = 4,054), respectively. PLINK 2.0 was used to detect the single-nucleotide polymorphism (SNP) × gut microbiota interaction effect on the risks of L1-L4 BMD, total BMD, and femur total BMD, respectively.


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1604 - 1610
1 Oct 2021
Takaoka Y Goto K Tamura J Okuzu Y Kawai T Kuroda Y Orita K Matsuda S

Aims

We aimed to evaluate the long-term outcome of highly cross-linked polyethylene (HXLPE) cemented acetabular components and assess whether any radiolucent lines (RLLs) which arose were progressive.

Methods

We retrospectively reviewed 170 patients who underwent 187 total hip arthroplasties at two hospitals with a minimum follow-up of ten years. All interventions were performed using the same combination of HXLPE cemented acetabular components with femoral stems made of titanium alloy. Kaplan-Meier survival analysis was performed for the primary endpoint of acetabular component revision surgery for any reason and secondary endpoint of the appearance of RLLs. RLLs that had appeared once were observed over time. We statistically assessed potential relationships between RLLs and a number of factors, including the technique of femoral head autografting and the Japanese Orthopaedic Association score.


Aims

Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones.

Methods

Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 827 - 839
1 Nov 2020
Hameister R Lohmann CH Dheen ST Singh G Kaur C

Aims

This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss.

Methods

TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA).


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims

The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone.

Methods

Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 78 - 83
1 Jul 2021
Roedel GG Kildow BJ Sveom DS Garvin KL

Aims

Highly cross-linked polyethylene (HXLPE) has greatly improved the durability of total hip arthroplasty (THA) in young patients because of its improved wear characteristics. Few studies have followed this population into the second decade, and therefore the purpose of this investigation was to evaluate the clinical outcome for THA patients 50 years of age and younger at a minimum of 15 years postoperatively. The second purpose was to evaluate the radiological findings secondary to wear or mechanical failure of the implant.

Methods

Between October 1999 and December 2005, 105 THAs were performed in 95 patients (53 female, 42 male) aged 50 years and younger (mean 42 years (20 to 50)). There were 87 patients (96 hips) that were followed for a minimum of 15 years (mean 17.3 years (15 to 21)) for analysis. Posterior approach was used with cementless fixation with a median head size of 28 mm. HXLPE was the acetabular bearing for all hips. Radiographs were evaluated for polyethylene wear, radiolucent lines, and osteolysis.


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1215 - 1221
1 Jul 2021
Kennedy JW Ng NYB Young D Kane N Marsh AG Meek RMD

Aims

Cement-in-cement revision of the femoral component represents a widely practised technique for a variety of indications in revision total hip arthroplasty. In this study, we compare the clinical and radiological outcomes of two polished tapered femoral components.

Methods

From our prospectively collated database, we identified all patients undergoing cement-in-cement revision from January 2005 to January 2013 who had a minimum of two years' follow-up. All cases were performed by the senior author using either an Exeter short revision stem or the C-Stem AMT high offset No. 1 prosthesis. Patients were followed-up annually with clinical and radiological assessment.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 25 - 32
1 Jul 2021
Amstutz HC Le Duff MJ

Aims

Adverse local tissue reactions associated with abnormal wear considerably slowed down the general use of metal-on-metal (MoM) hip resurfacing arthroplasty (HRA), now limited to a few specialized centres. In this study, we provide the clinical results of 400 consecutive MoM HRAs implanted more than 20 years ago in one such centre.

Methods

A total of 355 patients (400 hips) were treated with Conserve Plus HRA between November 1996 and November 2000. There were 96 female (27%) and 259 male patients (73%). Their mean age was 48.2 years (SD 10.9). The University of California, Los Angeles (UCLA) hip scores and 12-item Short Form Survey (SF-12) quality of life scores were reported. Survivorship was assessed using Kaplan-Meier analyses.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims

This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported.

Methods

This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 165 - 170
1 Jun 2021
Larson DJ Rosenberg JH Lawlor MA Garvin KL Hartman CW Lyden E Konigsberg BS

Aims

Stemmed tibial components are frequently used in revision total knee arthroplasty (TKA). The purpose of this study was to evaluate patient satisfaction, overall pain, and diaphyseal tibial pain in patients who underwent revision TKA with cemented or uncemented stemmed tibial components.

Methods

This is a retrospective cohort study involving 110 patients with revision TKA with cemented versus uncemented stemmed tibial components. Patients who underwent revision TKA with stemmed tibial components over a 15-year period at a single institution with at least two-year follow-up were assessed. Pain was evaluated through postal surveys. There were 63 patients with cemented tibial stems and 47 with uncemented stems. Radiographs and Knee Society Scores were used to evaluate for objective findings associated with pain or patient dissatisfaction. Postal surveys were analyzed using Fisher’s exact test and the independent-samples t-test. Logistic regression was used to adjust for age, sex, and preoperative bone loss.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 958 - 963
3 May 2021
Nguyen NTV Martinez-Catalan N Songy CE Sanchez-Sotelo J

Aims

The purpose of this study was to report bone adaptive changes after anatomical total shoulder arthroplasty (TSA) using a standard-length hydroxyapatite (HA)-coated humeral component, and to report on a computer-based analysis of radiographs to determine changes in peri-implant bone density objectively.

Methods

A total of 44 TSAs, performed between 2011 and 2014 using a cementless standard-length humeral component proximally coated with HA, were included. There were 23 males and 21 females with a mean age of 65 years (17 to 65). All shoulders had good quality radiographs at six weeks and five years postoperatively. Three observers graded bone adaptive changes. All radiographs were uploaded into a commercially available photographic software program. The grey value density of humeral radiological areas was corrected to the grey value density of the humeral component and compared over time.


The Journal of Bone & Joint Surgery British Volume
Vol. 61-B, Issue 3 | Pages 362 - 365
1 Aug 1979
Pho R

An operation is described in which a microvascular technique was used to transfer a living fibula, with its vascular pedicle intact, to replace the lower end of the radius after massive resection for giant-cell tumour. Angiography carried out six weeks later showed that the grafted bone was viable. Six months after operation the transplanted fibula showed no osteoporosis or bone resorption and bony union at the junction of host and graft


The Journal of Bone & Joint Surgery British Volume
Vol. 62-B, Issue 3 | Pages 376 - 380
1 Aug 1980
Bj0rksten B Boquist L

Chronic recurrent multifocal osteomyelitis (CRMO) is characterised by an insidious onset of fever, local swelling and pain in affected bones, and radiological abnormalities suggestive of osteomyelitis. The histopathological features in 14 patients are described. Morphologically CRMO begins as an acute inflammatory process with a predominance of polymorphonuclear leucocytes, which occasionally form an abscess and osteoclastic bone resorption. At a later stage the predominant features are lymphocytes in the inflammatory infiltrates and occasional granulomatous foci and sigans of bone formation. The clinical course may be prolonged for many years


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 1 | Pages 85 - 88
1 Jan 1988
Barbos M

Three madreporic prostheses in two patients were examined to evaluate resorption and formation of the surrounding bone tissue. All three prostheses were firmly fixed and had no clinical or radiographic signs of loosening. Transverse sections were examined by scanning electron microscopy at 40 days, 11 months and 2.5 years after implantation. The findings suggest that adaptive bone remodelling varies along the length of the stem; that bone resorption and formation are related to the time after implant; and that new bone formation (woven bone) can be found very close to the madreporic surface


Bone & Joint Research
Vol. 9, Issue 2 | Pages 60 - 70
1 Feb 2020
Li Z Arioka M Liu Y Aghvami M Tulu S Brunski JB Helms JA

Aims

Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma.

Methods

Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation.


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 1 | Pages 66 - 86
1 Feb 1973
Graham R Russell G Smith R

1. The phosphonates are simple chemical compounds containing P-C-P bonds which are resistant to the action of naturally occurring phosphatases and pyrophosphatases. They inhibit the formation and dissolution of apatite crystals in vitro and prevent ectopic mineralisation and bone resorption in animals. 2. In man one diphosphonate (EHDP) has been shown to reduce the excessive turnover of bone in Paget's disease and also appears to slow the mineralisation of ectopic bone matrix in myositis ossificans progressiva. 3. The possible uses of the diphosphonates in bone disorders with excessive resorption and in ectopic mineralisation are being further investigated


The Journal of Bone & Joint Surgery British Volume
Vol. 48-B, Issue 3 | Pages 517 - 525
1 Aug 1966
Tapp E

1. Tetracycline labelling methods have been used to measure the rate of growth in length and the rate of growth in width of the tibia of the normal rat. 2. The main limitations of the tetracycline methods are that in very young animals the bands of labelled bone are indistinct and remodelling occurs quickly; in animals nearing maturity, the growth in width is very slow and periods of at least fourteen days are required to give reliable results. 3. The tetracycline labelling methods can be used also to determine changes in the basic processes of bone formation and bone resorption


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 4 | Pages 737 - 739
1 Nov 1963
Smith MGH

1. Twenty-three patients were treated by cross screwing for diastasis of the tibia and fibula in fractures at the ankle. 2. It is suggested that limitation of ankle dorsiflexion after this treatment was caused by the presence of a mechanical block to dorsiflexion by spur formation at the margins of tibia and talus. 3. An ordinary bone screw controlled the diastasis satisfactorily in twenty patients. 4. The screw did not interfere with movement at the inferior tibio-fibular joint because bone resorption about that part of the screw in the fibula allowed a small range of movement. 5. Discomfort from the screw was relieved by its removal


The Journal of Bone & Joint Surgery British Volume
Vol. 38-B, Issue 1 | Pages 418 - 433
1 Feb 1956
Sissons HA

1. The bone changes in four autopsied cases of Cushing's syndrome are described. The changes take the form of osteoporosis, which is most marked in the spine and the ribs. 2. The osteoporosis results from impaired osteoblastic bone formation in the presence of a normal degree of osteoclastic bone resorption. 3. Histological abnormalities of fracture callus in Cushing's syndrome indicate interference with the proliferation of osteoblasts and cartilage cells and with the formation of new tissue by these cells. 4. The bone changes in Cushing's syndrome are comparable with those produced in experimental animals by the administration of A.C.T.H. or cortisone


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 851 - 857
1 Jun 2005
Davidson AW Hong A McCarthy SW Stalley PD

We treated 50 patients with bony malignancy by en-bloc resection, extracorporeal irradiation with 50 Gy and re-implantation of the bone segment. The mean survivor follow-up was 38 months (12 to 92) when 42 patients were alive and without disease. There were four recurrences. The functional results were good according to the Mankin score (17 excellent, 13 good, nine fair, three failures), the Musculoskeletal Tumour Society score (mean 77) and the Toronto Extremity Salvage score (mean 81). There was solid union, but bone resorption was seen in some cases. The dose of radiation was lethal to all cells and produced a dead autograft of perfect fit. Extracorporeal irradiation is a useful technique for limb salvage when there is reasonable residual bone stock. It allows effective re-attachment of tendons and produces a lasting biological reconstruction. There should be no risk of local recurrence or of radiotherapy-induced malignancy in the replanted bone


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 278 - 282
1 Mar 2001
Wimhurst JA Brooks RA Rushton N

We have investigated whether the particle-stimulated release of inflammatory cytokines from human primary macrophages in vitro was dependent upon the type of bone cement used. Particles of clinically relevant size were produced from Palacos R without radio-opacifier, Palacos R with BaSO. 4. , Palacos R with ZrO. 2. and from CMW3 which contains BaSO. 4. All four preparations produced significantly greater release of tumour necrosis factor alpha, interleukin-6 and interleukin-1 beta than a negative control but there were no significant differences between them. The differences in the ability to stimulate bone resorption and in clinical performance between proprietary bone cements previously recorded are not explained by the release of the cytokines most commonly implicated in osteolysis


Bone & Joint Research
Vol. 10, Issue 4 | Pages 285 - 297
1 Apr 2021
Ji M Ryu HJ Hong JH

Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA.

Cite this article: Bone Joint Res 2021;10(4):285–297.