Anatomical total knee arthroplasty alignment
Ankle replacements have improved significantly since the first reported attempt at resurfacing of the talar dome in 1962. We are now at a stage where ankle replacement offers a viable option in the treatment of end-stage ankle arthritis. As the procedure becomes more successful, it is important to reflect and review the current surgical outcomes. This allows us to guide our patients in the treatment of end-stage ankle arthritis. What is the better surgical treatment – arthrodesis or replacement?
Mechanical alignment has been a fundamental tenet of total knee arthroplasty (TKA) since modern knee replacement surgery was developed in the 1970s. The objective of mechanical alignment was to infer the greatest biomechanical advantage to the implant to prevent early loosening and failure. Over the last 40 years a great deal of innovation in TKA technology has been focusing on how to more accurately achieve mechanical alignment. Recently the concept of mechanical alignment has been challenged, and other alignment philosophies are being explored with the intention of trying to improve patient outcomes following TKA. This article examines the evolution of the mechanical alignment concept and whether there are any viable alternatives.
Obesity is a global epidemic of 2.1 billion people and a well known cause of osteoarthritis. Joint replacement in the obese attracts more complications, poorer outcomes and higher revision rates. It is a reversible condition and the fundamental principles of dealing with reversible medical conditions prior to elective total joint replacement should apply to obesity. The dilemma for orthopaedic surgeons is when to offer surgery in the face of a reversible condition, which if treated may obviate joint replacement and reduce the risk and severity of obesity related disease in both the medical arena and the field of orthopaedics.
This article provides an overview of the role of genomics in sarcomas and describes how new methods of analysis and comparative screening have provided the potential to progress understanding and treatment of sarcoma. This article reviews genomic techniques, the evolution of the use of genomics in cancer, the current state of genomic analysis, and also provides an overview of the medical, social and economic implications of recent genomic advances.
We live in troubled times. Increased opposition reliance on explosive devices, the widespread use of individual and vehicular body armour, and the improved survival of combat casualties have created many complex musculoskeletal injuries in the wars in Iraq and Afghanistan. Explosive mechanisms of injury account for 75% of all musculoskeletal combat casualties. Throughout all the echelons of care medical staff practice consistent treatment strategies of damage control orthopaedics including tourniquets, antibiotics, external fixation, selective amputations and vacuum-assisted closure. Complications, particularly infection and heterotopic ossification, remain frequent, and re-operations are common. Meanwhile, non-combat musculoskeletal casualties are three times more frequent than those derived from combat and account for nearly 50% of all musculoskeletal casualties requiring evacuation from the combat zone.
Amputation was once widely practised for primary bone tumours of the limbs. Yet this situation has changed with limb salvage surgery becoming increasingly popular in the last 30 years. Many different techniques are now available. These include allografts, autografts, endoprostheses and allograft-prosthesis composites. This article reviews these methods, concentrating on the functional outcomes and complications that have been reported.
Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments.
Modern athletes are constantly susceptible to performance-threatening injury as they push their bodies to greater limits and endure higher physical stresses. Loss of performance and training time can adversely and permanently affect a sportsperson’s career. Now more than ever with advancing medical technology the answer may lie in biologic therapy. We have been using peripheral blood stem cells (PBSC) clinically and have been able to demonstrate that stem cells differentiate into target cells to enable regenerative repair. The potential of this technique as a regenerative agent can be seen in three broad applications: 1) articular cartilage, 2) bone and 3) soft tissue. This article highlights the successful cases, among many, in all three of these applications.
Richard Carey Smith is an orthopaedic oncology surgeon with fellowship training in the UK, USA, Australia and Canada, and has worked in Zambia, Zimbabwe and Papa New Guinea. David Wood is head of the University Department of Orthopaedics in Perth, Western Australia. He did his masters in Africa, and first experienced Papa New Guinea on his medical elective, starting a lifelong commitment to medical aid work there.