Radiotherapy is a well-known local treatment for spinal metastases. However, in the presence of postoperative systemic therapy, the efficacy of radiotherapy on local control (LC) and overall survival (OS) in patients with spinal metastases remains unknown. This study aimed to evaluate the clinical outcomes of post-surgical radiotherapy for spinal metastatic non-small-cell lung cancer (NSCLC) patients, and to identify factors correlated with LC and OS. A retrospective, single-centre review was conducted of patients with spinal metastases from NSCLC who underwent surgery followed by systemic therapy at our institution from January 2018 to September 2022. Kaplan-Meier analysis and log-rank tests were used to compare the LC and OS between groups. Associated factors for LC and OS were assessed using Cox proportional hazards regression analysis.Aims
Methods
Acridine orange (AO) demonstrates several biological activities. When exposed to low doses of X-ray radiation, AO increases the production of reactive radicals (radiodynamic therapy (AO-RDT)). We elucidated the efficacy of AO-RDT in breast and prostate cancer cell lines, which are likely to develop bone metastases. We used the mouse osteosarcoma cell line LM8, the human breast cancer cell line MDA-MB-231, and the human prostate cancer cell line PC-3. Cultured cells were exposed to AO and radiation at various concentrations followed by various doses of irradiation. The cell viability was then measured. In vivo, each cell was inoculated subcutaneously into the backs of mice. In the AO-RDT group, AO (1.0 μg) was locally administered subcutaneously around the tumour followed by 5 Gy of irradiation. In the radiation group, 5 Gy of irradiation alone was administered after macroscopic tumour formation. The mice were killed on the 14th day after treatment. The change in tumour volume by AO-RDT was primarily evaluated.Aims
Methods
Between 1992 and 1999, we treated 350 patients with skeletal metastases. A multivariable analysis of the patients was conducted using the Cox proportional hazards model. We identified five significant prognostic factors for survival, namely, the site of the primary lesion, the performance status (Eastern Cooperative Oncology Group status 3 or 4), the presence of visceral or cerebral metastases, any previous chemotherapy, and multiple skeletal metastases. The score for each significant factor was derived from the corresponding estimated regression coefficients (natural logarithm of the hazard ratio). The prognostic score was calculated by adding all the scores for individual factors. The rate of survival was 31% at six months and 11% at one year for the patients with a prognostic score of 6 or more. By contrast, patients with a prognostic score of 2 or less had a rate of survival of 98% at six months and 89% at one year. This scoring system can be used to determine the optimal treatment for patients with pathological fractures or
There is a lack of evidence about the risk factors for local recurrence of a giant cell tumour (GCT) of the sacrum treated with nerve-sparing surgery, probably because of the rarity of the disease. This study aimed to answer two questions: first, what is the rate of local recurrence of sacral GCT treated with nerve-sparing surgery and second, what are the risk factors for its local recurrence? A total of 114 patients with a sacral GCT who underwent nerve-sparing surgery at our hospital between July 2005 and August 2017 were reviewed. The rate of local recurrence was determined, and Kaplan-Meier survival analysis carried out to evaluate the mean recurrence-free survival. Possible risks factors including demographics, tumour characteristics, adjuvant therapy, operation, and laboratory indices were analyzed using univariate analysis. Variables with p < 0.100 in the univariate analysis were further considered in a multivariate Cox regression analysis to identify the risk factors.Aims
Methods
To investigate the benefits of denosumab in combination with nerve-sparing surgery for treatment of sacral giant cell tumours (GCTs). This is a retrospective cohort study of patients with GCT who presented between January 2011 and July 2017. Intralesional curettage was performed and patients treated from 2015 to 2017 also received denosumab therapy. The patients were divided into three groups: Cohort 1: control group (n = 36); cohort 2: adjuvant denosumab group (n = 9); and cohort 3: neo- and adjuvant-denosumab group (n = 17).Aims
Methods
There is currently no consensus about the mean
volume of blood lost during spinal tumour surgery and surgery for metastatic
spinal disease. We conducted a systematic review of papers published
in the English language between 31 January 1992 and 31 January 2012.
Only papers that clearly presented blood loss data in spinal surgery
for metastatic disease were included. The random effects model was
used to obtain the pooled estimate of mean blood loss. We selected 18 papers, including six case series, ten retrospective
reviews and two prospective studies. Altogether, there were 760
patients who had undergone spinal tumour surgery and surgery for
metastatic spinal disease. The pooled estimate of peri-operative
blood loss was 2180 ml (95% confidence interval 1805 to 2554) with catastrophic
blood loss as high as 5000 ml, which is rare. Aside from two studies
that reported large amounts of mean blood loss (>
5500 ml), the
resulting funnel plot suggested an absence of publication bias.
This was confirmed by Egger’s test, which did not show any small-study
effects
(p = 0.119). However, there was strong evidence of heterogeneity
between studies (I2 = 90%; p <
0.001). Spinal surgery for metastatic disease is associated with significant
blood loss and the possibility of catastrophic blood loss. There
is a need to establish standardised methods of calculating and reporting
this blood loss. Analysis should include assessment by area of the
spine, primary pathology and nature of surgery so that the amount
of blood loss can be predicted. Consideration should be given to
autotransfusion in these patients. Cite this article: