Advertisement for orthosearch.org.uk
Results 1 - 97 of 97
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 52-B, Issue 3 | Pages 571 - 577
1 Aug 1970
Bentley G Greer RB

1. The epiphyses of the metatarsal heads of 250-gramme rabbits were separated at the zone of cell columns, stripped of perichondrium, labelled with tritiated thymidine and transplanted into the back muscles of the same animals. 2. Endochondral ossification started in the grafts at four days, was well established by seven days and progressed until fourteen days, the end of the study. 3. Progressive passage of the label down the zone of cell columns and into the hypertrophic zone was observed. 4. The tritiated-. 3. H thymidine label had disappeared from the cartilage cells by ten days. No labelling was observed in the bone cells at any stage. 5. It was not possible to demonstrate from the experiment that growth plate chondrocytes are precursors of osteoblasts in the process of endochondral ossification in rabbits


The Journal of Bone & Joint Surgery British Volume
Vol. 42-B, Issue 4 | Pages 824 - 839
1 Nov 1960
Kember NF

1. The pattern of tritiated thymidine labelling in the cells of the epiphysial cartilage and metaphysis of the tibia in the rat is described for intervals of one hour to twenty-eight days after injection.

2. The region of dividing cells is defined and evidence given for a zone of reserve cells at the top of the cartilage columns.

3. The difficulties of quantitative grain count studies are discussed, and some approximate values are given for the generation time and mitotic cycle periods of the cartilage plate cells.

4. Some further evidence is given about the life cycles of the osteoblast and the osteoclast.


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 4 | Pages 458 - 464
1 Nov 1977
von der Mark K von der Mark H

The role of three genetically distinct collagen types in the formation of endochondral bone and in calcification and resorption of cartilage has been assessed. Using antibodies specific to types I, II and III collagen we have demonstrated in the embryonic chick tibia that endochondral bone formation began with deposition of type III collagen in lacunae of hypertropic chondrocytes by invading bone-marrow-derived cells. This was followed by the deposition of type I collagen, which is the collagenous constituent of endochondral osteoid. At later stages of development endochondral osteoid was found in the epiphysial growth plate in apparently intact lacunae of hypertrophic chondrocytes; this indicated that the latter might contribute to the synthesis of osteoid type I collagen. Immuno-histological staining for collagen types, and von Kossa staining for calcium phosphate on parallel sections, demonstrated that type I and type II collagen matrices were substrates for calcification. Endochondral bone (with type I collagen) was found on scaffolding of both uncalcified and calcified cartilage (with type II collagen), indicating that calcification of endochondral osteoid and of the underlying cartilage occurred independentyl. Spicules of endochondral cancellous bone of a four-week-old chick contained a core of calcified type II collagen.


Bone & Joint Research
Vol. 7, Issue 6 | Pages 397 - 405
1 Jun 2018
Morcos MW Al-Jallad H Li J Farquharson C Millán JL Hamdy RC Murshed M

Objectives

Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice.

Methods

Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1-/- mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation.

Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 767 - 779
8 Dec 2021
Li Y Yang Y Wang M Zhang X Bai S Lu X Li Y Waldorff EI Zhang N Lee WY Li G

Aims. Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation. Methods. The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation. Results. All rats tolerated the treatment well and no obvious adverse effects were found. By comparison, the HSR signal (three hrs/day) treatment group achieved the best healing outcome, in that endochondral ossification and bone consolidation were enhanced. In addition, HSR signal treatment (one one hr/day) had similar effects to treatment using the classic signal (three three hrs/day), indicating that treatment duration could be significantly shortened with the HSR signal. Conclusion. HSR signal may significantly enhance bone formation and shorten daily treatment duration in DO, making it a potential candidate for a new clinical protocol for patients undergoing DO treatments. Cite this article: Bone Joint Res 2021;10(12):767–779


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 726 - 730
1 Jul 1998
Iwabu S Sasaki T Kameyama M Teruya T Horiuchi Y Yabe Y

We observed the healing process under rigid external fixation after Salter-Harris type-1 or type-2 physeal separation at the proximal tibia in immature rabbits. Metaphyseal vessels grew across the gap with little delay; the site of separation then came to lie in the metaphysis and was bridged by endochondral ossification. Union was achieved within two days in all rabbits. Progression of endochondral ossification repaired the separated physis, thus showing ‘primary healing of physeal separation’. This depends on accurate reduction and stable fixation to allow the survival of vessels across the gap


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 682 - 687
1 May 2006
Kanazawa T Soejima T Murakami H Inoue T Katouda M Nagata K

We studied bone-tendon healing using immunohistochemical methods in a rabbit model. Reconstruction of the anterior cruciate ligament was undertaken using semitendinosus tendon in 20 rabbits. Immunohistochemical evaluations were performed at one, two, four and eight weeks after the operation. The expression of CD31, RAM-11, VEGF, b-FGF, S-100 protein and collagen I, II and III in the bone-tendon interface was very similar to that in the endochondral ossification. Some of the type-III collagen in the outer layer of the graft, which was deposited at a very early phase after the operation, was believed to have matured into Sharpey-like fibres. However, remodelling of the tendon grafted into the bone tunnel was significantly delayed when compared with this ossification process. To promote healing, we believe that it is necessary to accelerate remodelling of the tendon, simultaneously with the augmentation of the ossification


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 810 - 812
1 Jun 2008
Klein R Burgkart R Woertler K Gradinger R Vogt S

Osteochondrosis juvenilis is caused by a dysfunction of endochondral ossification. Several epiphyses and apophyses can be affected, but osteochondrosis juvenilis of the medial malleolus has not been reported. We describe a 12-year-old boy with bilateral pes planovalgus who was affected by this condition. Conservative management was successful. The presentation, aetiology and treatment are described and the importance of including it in the differential diagnosis is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 998 - 1006
1 Jul 2012
Kodama A Kamei N Kamei G Kongcharoensombat W Ohkawa S Nakabayashi A Ochi M

For the treatment of ununited fractures, we developed a system of delivering magnetic labelled mesenchymal stromal cells (MSCs) using an extracorporeal magnetic device. In this study, we transplanted ferucarbotran-labelled and luciferase-positive bone marrow-derived MSCs into a non-healing femoral fracture rat model in the presence of a magnetic field. The biological fate of the transplanted MSCs was observed using luciferase-based bioluminescence imaging and we found that the number of MSC derived photons increased from day one to day three and thereafter decreased over time. The magnetic cell delivery system induced the accumulation of photons at the fracture site, while also retaining higher photon intensity from day three to week four. Furthermore, radiological and histological findings suggested improved callus formation and endochondral ossification. We therefore believe that this delivery system may be a promising option for bone regeneration


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 5 | Pages 822 - 829
1 Sep 1990
Mizuno K Mineo K Tachibana T Sumi M Matsubara T Hirohata K

We studied the precise role of the fracture haematoma in healing by the experimental transplantation of the haematoma at two days and four days after fracture of the rat femur to subperiosteal and intramuscular sites. We used bone marrow and peripheral blood haematomas for control experiments. The transplanted two-day fracture haematoma produced new bone by endochondral ossification at the subperiosteal site, but not at the intramuscular site. Four-day fracture haematoma produced new bone formation at both subperiosteal and intramuscular sites. These results suggest that fracture haematoma has an inherent osteogenetic potential


The Journal of Bone & Joint Surgery British Volume
Vol. 61-B, Issue 2 | Pages 194 - 199
1 May 1979
Sanerkin N

Old calcified fibrin coagula are frequently found in simple bone cysts. They provide a scaffold on which new bone is laid down, in a process analogous to endochondral ossification. It is suggested that these coagula are derived in substantial part from the plasma-like contents of the cyst, after the release of plasma-clotting factors as the result of injury. Major haemorrhage is not involved and in many cases there is no antecedent fracture. The phenomenon is not seen in other common cystic conditions of bone and its recognition is thus helpful in the histological diagnosis of simple bone cyst. Cystic bone infarcts and their possible confusion with simple bone cysts are also briefly discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 37-B, Issue 4 | Pages 691 - 710
1 Nov 1955
Duthie RB Barker AN

1. The utilisation of radioactive sulphur in vivo has been demonstrated both macroscopically and microscopically during the preosseous stage of bone repair. 2. The labelled mucopolysaccharide complex, chondroitin sulphuric acid, has been studied during the formation of the medullary and periosteal blastemata in the healing of a fracture. 3. The appearance and possible significance of mast cells adjacent to a fracture, and resulting from the stimulus of trauma, are discussed. 4. Cortisone has been seen to affect the formation of the periosteal cartilaginous blastema and subsequent process of endochondral ossification, with liberation of increased amounts of chondroitin sulphuric acid which was calcified rather than ossified


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 1 | Pages 123 - 135
1 Feb 1971
McKibbin B

1. Grafts of joint cartilage from immature lambs were used to repair articular cartilage defects in other lambs and in adult sheep. 2. Stability of these grafts in a functional state was found in most for periods up to fourteen months. Although a limited homograft reaction occurred this did not lead to destruction of the cartilage, even though parts of it were well vascularised. 3. The results suggest that the process of endochondral ossification is associated with the liberation of antigenic material leading to sensitisation of the host. Destruction ofthe cartilage is prevented by an inhibitory action which the matrix appears to exert on the destructive elements themselves and which is itself dependent on the vitality of the chondrocytes. 4. The avascularity of cartilage is not a sufficient explanation for its privileged position in relation to the homograft reaction


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 121 - 124
1 Jan 2003
Kitoh H Kitakoji T Katoh M Takamine Y

We studied radiographs of 125 children (105 boys, 20 girls) with unilateral Legg-Calvé-Perthes’ disease to examine the epiphyseal development of the femoral head in the contralateral (unaffected) hip. The epiphyseal height (EH) and width (EW) of the unaffected hip were measured on the initial anteroposterior pelvic radiograph. In 109 of the patients (87.2%) the EH was below the mean for normal Japanese children and a significantly small EH (below −2 . sd. s) was observed in 23 patients (18.4%). By contrast, the EW of most patients (95.2%) lay within ± 2 SDs of normal values except for six with a significantly small EW. A strong positive linear correlation (R = 0.87) was observed in the EH:EW ratio in the patients. A smaller EH than expected for EW in our series indicated epiphyseal flattening of the femoral head in Legg-Calvé-Perthes’ disease. Our findings support the hypothesis that a delay in endochondral ossification in the proximal capital femoral epiphysis may be associated with the onset of Perthes’ disease


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 3 | Pages 272 - 278
1 Aug 1977
Lane L Villacin A Bullough P

A quantitative study of the vascularity and a qualitative study of the remodelling of the calcified cartilage and subchondral bone end-plate of adult human femoral and humeral heads were performed with respect to age. In the femoral head the number of vessels per unit area was found to fall 20% from adolescence until the seventh decade and in the humeral head 15% until the sixth decade. Thereafter an increase was noted in the femur but none in the humerus. More vessels were present at all ages in the more loaded areas of the articular surfaces: 25% more for the femur and 15% more for the humerus. The degree of active remodelling by endochondral ossification declined 50% from adolescence until the seventh decade in the femoral head, and 30% until the sixth decade in the humeral head, rising thereafter to levels comparable to those found at young ages. More remodeling was noted in the more loaded areas at all ages


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 2 | Pages 184 - 188
1 Mar 1984
Mirovsky Y Axer A Hendel D

The residual shortening of the affected limbs in 55 patients treated by subtrochanteric varus derotation osteotomy was compared with that in 71 patients treated with weight-relieving calipers. When last examined, 43 of the former group and 47 of the latter had reached complete or near-complete skeletal maturity. The average follow-up was 9.1 years in the osteotomised patients and 5.25 years in the conservatively treated group. The average residual shortening (0.9 cm) was identical in both groups. In most patients the initial shortening caused by the osteotomy gradually corrected as, over a period of several years, the postosteotomy angle gradually became less varus. Any residual shortening depended principally on the severity of inhibition of endochondral ossification at the proximal femoral growth plate. Less residual shortening was seen in children who were under seven years of age at the onset of symptoms (under eight at operation) in whom the open-wedge technique of osteotomy was employed and who had good anatomical results


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 4 | Pages 543 - 549
1 Aug 1988
Kojimoto H Yasui N Goto T Matsuda S Shimomura Y

The histology and mechanics of leg lengthening by callus distraction were studied in 27 growing rabbits. Tibial diaphyses were subjected to subperiosteal osteotomy, held in a neutral position for 10 days and then slowly distracted at 0.25 mm/12 hours, using a dynamic external fixator. Radiographs showed that the gap became filled with callus having three distinct zones. Elongation appeared to occur in a central radiolucent zone; this was bounded by two sclerotic zones. Histologically, the radiolucent zone consisted of longitudinally arranged cartilage and fibrous tissue while the sclerotic zones were formed by fine cancellous bone. New bone occasionally contained islands of cartilage, suggesting it had been formed by endochondral ossification. After completion of distraction, the two sclerotic zones fused, shrank and were eventually absorbed, leaving tubular bone with a new cortex. When the periosteum had been removed at the operation, callus formation was markedly disturbed and there was failure of bone lengthening. Scraping of endosteum, in contrast, did not have a pronounced effect. These results suggest that the preservation of periosteum is essential if bone lengthening by callus distraction is to succeed, and that preservation of the periosteum is more important than careful corticotomy


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 5 | Pages 837 - 843
1 Sep 1994
Apte S Kenwright J

We studied the cellular response to physeal distraction in the growth plates of skeletally immature rabbits. We used a new method of labelling and detection of proliferating cells with bromodeoxyuridine (BUdR) and an anti-BUdR antibody. The application of an external fixator but no distraction force produced no changes in the growth plates. After five days of distraction at a maximum force of 20 N, the growth plate became thicker, mainly because of an increase in the number of hypertrophic chondrocytes, but there was no evidence of increased cell proliferation. Recent fractures were seen at the junction of growth plate and metaphysis but the increase in bone length was insignificant. After ten days of distraction at the same maximum force, the chondrocyte columns had become disorganised and cell proliferation was significantly decreased. There was an increase in bone length due to distraction of the fracture gap. In this model, physeal distraction did not stimulate cell proliferation, but actually inhibited it. The apparent increase in growth-plate thickness produced by distraction is not due to increased cell production, but results from inhibition of endochondral ossification and the consequent accumulation of hypertrophic chondrocytes. Any growth after distraction depends on the ability of growth-plate chondrocytes to divide. The decrease in proliferative activity which we found after ten days of distraction suggests the need for caution in the use of such procedures in young children


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 760 - 766
1 Jul 2001
Suzuki H Takahashi K Yamagata M Shimizu S Moriya H Yamazaki M

We have examined the process of fusion of the intertransverse processes and bone graft in the rabbit by in situ hybridisation and evaluated the spatial and temporal expression of genes encoding pro-α1 (I) collagen (COL1A1), pro-α1 (II) collagen (COL2A1) and pro-α1 (X) collagen (COL10A1). Beginning at two weeks after operation, osteogenesis and chondrogenesis occurred around the transverse process and the grafted bone at the central portion of the area of the fusion mass. Osteoblasts and osteocytes at the newly-formed woven bone expressed COL1A1. At the cartilage, most chondrocytes expressed COL2A1 and some hypertrophic chondrocytes COL10A1. In some regions, co-expression of COL1A1 and COL2A1 was observed. At four weeks, such expressions for COL1A1, COL2A1 and COL10A1 became prominent at the area of the fusion mass. From four to six weeks, bone remodelling progressed from the area of the transverse processes towards the central zone. Osteoblasts lining the trabeculae expressed a strong signal for COL1A1. At the central portion of the area of the fusion mass, endochondral ossification progressed and chondrocytes expressed COL2A1 and COL10A1. Our findings show that the fusion process begins with the synthesis of collagens around the transverse processes and around the grafted bone independently. Various spatial and temporal osteogenic and chondrogenic responses, including intramembranous, endochondral and transchondroid bone formation, progress after bone grafting at the intertransverse processes. Bone formation through cartilage may play an important role in posterolateral spinal fusion


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 7 | Pages 1026 - 1031
1 Sep 2003
Guo X Chau W Chan Y Cheng JC

We undertook a comparative study of magnetic resonance imaging (MRI) vertebral morphometry of thoracic vertebrae of girls with adolescent idiopathic thoracic scoliosis (AIS) and age and gender-matched normal subjects, in order to investigate abnormal differential growth of the anterior and posterior elements of the thoracic vertebrae in patients with scoliosis. Previous studies have suggested that disproportionate growth of the anterior and posterior columns may contribute to the development of AIS. Whole spine MRI was undertaken on 83 girls with AIS between the age of 12 and 14 years, and Cobb’s angles of between 20° and 90°, and 22 age-matched controls. Multiple measurements of each thoracic vertebra were obtained from the best sagittal and axial MRI cuts. Compared with the controls, the scoliotic spines had longer vertebral bodies between T1 and T12 in the anterior column and shorter pedicles with a larger interpedicular distance in the posterior column. The differential growth between the anterior and the posterior elements of each thoracic vertebra in the patients with AIS was significantly different from that in the controls (p < 0.01). There was also a significant positive correlation between the scoliosis severity score and the ratio of differential growth between the anterior and posterior columns for each thoracic vertebra (p < 0.01). Compared with age-matched controls, the longitudinal growth of the vertebral bodies in patients with AIS is disproportionate and faster and mainly occurs by endochondral ossification. In contrast, the circumferential growth by membranous ossification is slower in both the vertebral bodies and pedicles


The Journal of Bone & Joint Surgery British Volume
Vol. 40-B, Issue 1 | Pages 116 - 122
1 Feb 1958
Dale GG Harris WR

1. The methods by which epiphyses receive their blood supply was studied by means of India ink injections in monkeys. Two types were identified depending upon whether the epiphysis was entirely or partly covered by articular cartilage. In the former, nutrient vessels enter the epiphysis by traversing the perichondrium at the periphery of the plate. In the latter they enter the epiphysis by penetrating the cortex at the side of the epiphysis at a point remote from the epiphysial plate. 2. The histological changes after separation of the second type of epiphysis were also studied. After temporary interference with endochondral ossification marked by increased thickness of the epiphysial plate, healing occurred so rapidly that within three weeks it was difficult to determine that the epiphysis had been separated at all. 3. It is concluded that when nutrient vessels enter an epiphysis at a point remote from the epiphysial plate, that epiphysis can be separated without serious disturbance to its blood supply and accordingly without interference with its capacity for growth. As it has been established that an epiphysis which is entirely covered by articular cartilage cannot be separated without destruction of its blood supply and subsequent avascular necrosis (Harris and Hobson 1956), it is concluded that the prognosis of an epiphysial separation is dependent upon the degree of damage to its blood supply rather than the mechanical disturbance of the epiphysial plate


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 2 | Pages 304 - 318
1 May 1965
Urist MR Wallace TH Adams T

1. Autografts, isografts and homografts of fibrocartilaginous callus were observed in the anterior chamber of the eye in rats. Proliferation of cartilage ceased, endochondral ossification followed, and the end-product was a new and complete ossicle with a cortex and a marrow cavity. The size and shape of the ossicle was determined by the size and shape of the sample of callus. Thus the callus in the eye performed the function of a cartilage model like that of the developing epiphysis or a healing fracture of a long bone. 2. Fibrocartilaginous callus, heavily labelled with . 3. H-thymidine, was transplanted to the eye twenty-four hours after the last injection, when there was little if any radioactive thymidine circulating in the blood. A few small chondrocytes with labelled nuclei persisted in the cores of new bone trabeculae, but the largest part of the labelled callus was resorbed and replaced by unlabelled new bone. 3. Homografts of labelled callus produced the same results as autografts at twenty-five days, but between twenty-five and forty-five days the donor cells were destroyed by the immune response of the host. 4. Isogenous transplants in host rats treated with . 3. H-thymidine between nine and thirteen days, when the callus was invaded by new blood vessels, produced many osteogenetic cells with labelled nuclei and made it possible to trace the origin of the new bone. The label appeared in the progenitor cells within twenty-four hours. While remaining thereafter in progenitor cells, it appeared also in osteoclasts (or chondroclasts) and osteoblasts in forty-eight to seventy-two hours, and in osteocytes in ninety-six to 120 hours. Chondrocytes did not proliferate and were not labelled in the eye. 5. Homogenous transplants in host rats treated with . 3. H-thymidine between five and one days before the operation also produced new bone, but contained no labelled osteoprogenitor or bone cells after twenty-five days in the eye. At forty-five days the donor tissue had been destroyed by the immune response of the host. 6. Devitalised callus was encapsulated in inflammatory connective tissue and scar. When the dead callus was absorbed by the capillaries of the host new bone formation by induction produced a scanty deposit as a delayed event in a few instances. 7. Irrespective of whether it originated in the donor or the host, a connective-tissue cell type that proliferated rapidly and became labelled with . 3. H-thymidine was identified as a progenitor cell. Differentiation and specialisation as osteoprogenitor cells occurred after the growth of blood vessels into the interior of the callus, and developed inside of excavation chambers in cartilage. Except that the interaction of the donor tissue and host cells leading to new bone formation by induction takes place in the interior of the excavation chamber, the biophysico-chemical mechanism is unknown


Bone & Joint Research
Vol. 13, Issue 5 | Pages 214 - 225
3 May 2024
Groven RVM Kuik C Greven J Mert Ü Bouwman FG Poeze M Blokhuis TJ Huber-Lang M Hildebrand F Cillero-Pastor B van Griensven M

Aims

The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies.

Methods

A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase.


The Journal of Bone & Joint Surgery British Volume
Vol. 40-B, Issue 4 | Pages 742 - 764
1 Nov 1958
Allbrook D Kirkaldy-Willis WH

The experiments were performed to answer three main questions. These and our answers may be summarised as follows. What is the precise mechanism of healing of a raw bony surface in a joint? What cells are involved? Where do they originate?—In all the implant experiments and in the control series the fundamental mechanism of healing was similar. 1. A massive proliferation of fibroblasts occurred from the cut periosteum, from the cut joint capsule, and to a lesser extent from the medullary canal. 2. Fibroblasts grew centripetally in the first few weeks after operation, attempting to form a "fibroblast cap" to the cut bone end. 3. Fibroblasts of this cap near the cut bone spicules metamorphosed to become prechondroblasts, chondroblasts laying down cartilage matrix, and hypertrophied (alkaline phosphatase-secreting) chondrocytes lying in a calcified matrix. 4. This calcified cartilage matrix was invaded by dilated capillaries probably bearing osteoblasts which laid down perivascular (endochondral) bone. 5. Some of the cells of projecting bone spicules died and their matrix was eroded in the presence of many osteoclasts. 6. In the control experiments of simple excision of the radial head new bone was produced at the periphery only by processes (3) and (4). This sealed off the underlying peripheral cortical bone from the superficially placed peripheral articular surface of fibrocartilage. At about a year from operation the central portion of the articular surface was still formed of bare bone, or of bone spicules covered by a thin layer of irregularly arranged collagen fibres. The opposite capitular articular cartilage was badly eroded. Does the introduction of a dead cartilage implant over the raw bone end affect in any way the final constitution of the new articular surface?—In the implant experiments the new bone produced by processes (3) and (4) formed, after about a year, a complete cortical plate which entirely sealed off the cut end of the radius and left a superficially placed articular covering of smooth fibrocartilage, closely resembling a normal joint surface. The opposite capitular articular surface was normal. What is the final fate of such an implant?—Whale cartilage implants underwent replacement by fibroblasts and collagen fibres, and took about nine months to disappear. The cartilage of fixed autotransplants and homotransplants underwent similar gradual replacement, and took about the same time in each case. The dead bone, implanted in association with the cartilage in both cases, acted as a nidus for hyaline cartilage production by chondrocytes derived from fibroblasts. This cartilage underwent endochondral ossification. This observation suggests that induction by non-cellular osseous material is a factor in chondrification and ossification. All the implants functioned as temporary articular menisci or in some cases as temporary radial articular surfaces. They were always replaced by a permanent fibrocartilaginous meniscus, or a fibrocartilaginous articular surface. An implant did, in fact, always act as a temporary protecting cap and mould for the subjacent growth offibroblasts which was necessary for the production of a satisfactory new joint surface


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 963 - 971
1 Aug 2022
Sun Z Liu W Liu H Li J Hu Y Tu B Wang W Fan C

Aims

Heterotopic ossification (HO) is a common complication after elbow trauma and can cause severe upper limb disability. Although multiple prognostic factors have been reported to be associated with the development of post-traumatic HO, no model has yet been able to combine these predictors more succinctly to convey prognostic information and medical measures to patients. Therefore, this study aimed to identify prognostic factors leading to the formation of HO after surgery for elbow trauma, and to establish and validate a nomogram to predict the probability of HO formation in such particular injuries.

Methods

This multicentre case-control study comprised 200 patients with post-traumatic elbow HO and 229 patients who had elbow trauma but without HO formation between July 2019 and December 2020. Features possibly associated with HO formation were obtained. The least absolute shrinkage and selection operator regression model was used to optimize feature selection. Multivariable logistic regression analysis was applied to build the new nomogram: the Shanghai post-Traumatic Elbow Heterotopic Ossification Prediction model (STEHOP). STEHOP was validated by concordance index (C-index) and calibration plot. Internal validation was conducted using bootstrapping validation.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 474 - 487
2 Aug 2021
Duan M Wang Q Liu Y Xie J

Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.

Cite this article: Bone Joint Res 2022;11(8):561–574.


Bone & Joint 360
Vol. 13, Issue 4 | Pages 35 - 37
2 Aug 2024

The August 2024 Oncology Roundup360 looks at: What factors are associated with osteoarthritis after cementation for benign aggressive bone tumour of the knee joint: a systematic review and meta-analysis; Recycled bone grafts treated with extracorporeal irradiation or liquid nitrogen freezing after malignant tumour resection; Intercalary resection of the tibia for primary bone tumours: are vascularized fibula autografts with or without allografts a durable reconstruction?; 3D-printed modular prostheses for the reconstruction of intercalary bone defects after joint-sparing limb salvage surgery for femoral diaphyseal tumours; Factors influencing the outcome of patients with primary Ewing’s sarcoma of the sacrum; The significance of surveillance imaging in children with Ewing’s sarcoma and osteosarcoma; Resection margin and soft-tissue sarcomas of the extremities treated with limb-sparing surgery and postoperative radiotherapy.


Bone & Joint Research
Vol. 11, Issue 3 | Pages 162 - 170
14 Mar 2022
Samvelyan HJ Huesa C Cui L Farquharson C Staines KA

Aims

Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2-/-) display accelerated bone growth.

Methods

We examined vulnerability of Socs2-/- mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 657 - 666
17 Oct 2023
Sung J Barratt KR Pederson SM Chenu C Reichert I Atkins GJ Anderson PH Smitham PJ

Aims

Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy.

Methods

Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq).


Bone & Joint Research
Vol. 13, Issue 5 | Pages 237 - 246
17 May 2024
Cheng B Wu C Wei W Niu H Wen Y Li C Chen P Chang H Yang Z Zhang F

Aims

To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment.

Methods

Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 409 - 412
22 Jun 2022
Tsang SJ Ferreira N Simpson AHRW


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims

We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism.

Methods

Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


The Journal of Bone & Joint Surgery British Volume
Vol. 34-B, Issue 4 | Pages 646 - 698
1 Nov 1952
Duraiswami PK

1 . The magnitude of the problem of congenital anomalies becomes evident when one takes into consideration the fact that they cause the death of approximately one quarter of the human race either before or shortly after birth, and handicap an appreciable proportion of the survivors throughout their lives. Further, a significant percentage of infants judged to be normal at birth are found in later life to suffer from "disguised" anomalies of the skeleton and soft tissues. Though the study of genetic factors leading to congenital defects has attracted a great deal of attention during the last few decades, the importance of environmental causes of human malformations has received relatively less emphasis. The association of congenital anomalies such as cataract and cardiac septal defects with maternal intercurrent infection of rubella during the early months of pregnancy demonstrates clearly that changes in the germplasm cannot always be invoked as the cause of developmental abnormalities. Congenital malformations that are sometimes genetically determined, such as microphthalmos, cleft palate, and certain skeletal abnormalities, can be caused in the offspring not only by maternal nutritional deficiencies and x-radiation but also, at least in some animals, such as chickens, rats and rabbits, by the introduction of certain substances like insulin into the environment of the embryo during its development. 2. Since very little is known of the detailed histology of the early human embryo, the histological examination of cases of perverted growth is mainly limited to aborted foetuses which, unfortunately, tend to present varying degrees of post-mortem degeneration before accurate histological methods can be applied. It is exactly in this field that animal experiments can offer valuable help. According to Mall and other embryologists the pathological changes that take place in human foetuses and those obtained experimentally in animals are not merely "analogous or similar but identical.". 3. An attempt has been made to review, in some detail, the more important work which has been carried out on experimental teratogenesis, on the epidemiological implications of developmental arrests in humans, and on foetal abnormalities associated with maternal metabolic and hormonal disorders during pregnancy. 4. The technique employed for injection of insulin into the egg yolk has been described. Methods used for the estimation of blood sugar in chick embryos at various stages after injection of insulin and special histochemical techniques for localising polysaccharides in cartilage have been outlined. 5. A few salient experimental results have been tabulated, and some of the insulin-induced abnormalities have been illustrated. 6. The possible mechanism of action of insulin in the causation of the various developmental anomalies has been discussed. Broadly speaking, insulin seems to affect primarily the part or tissue which is in the most active stage of growth or differentiation at the time of the injection. Within the range of 0·05 to 6 units of insulin employed, the incidence, severity and distribution of the deformities appear to increase with the dose of the hormone. It has been observed that the hypoglycaemia caused by insulin injection is not counteracted till about the twelfth day of incubation, presumably because of excessive accumulation of glycogen in the yolk-sac membrane immediately after the injection, and because of lack of glycogen storage in the embryonic liver and the absence of active secretion in the endocrine glands concerned with the carbohydrate metabolism of the embryo. It has been suggested that this unchecked hypoglycaemia may deprive the mesenchyme, pre-cartilage and cartilage of glycogen and mucopolysaccharides (chondroiten-sulphuric acid complexes), depending on the time of injection and the dose of insulin, and thus not only give rise to a variety of single and multiple deformities in the cartilaginous skeleton but also interfere with the normal endochondral ossification, resulting in a generalised developmental disturbance of bone resembling osteogenesis imperfecta in the human. 7. Insulin-induced abnormalities can be prevented to a remarkable extent by injecting nicotinamide and riboflavin into eggs along with insulin. 8. The question of the practical application of the knowledge gained from experimental observations on insulin-induced developmental abnormalities in explaining the possible causation of congenital anomalies in humans by genetic and environmental teratogenic factors, has been discussed. It is suggested that the orderly progression from the mesenchymatous condensation to cartilage, and then through calcified cartilage to bone, may be disturbed by these teratogenic factors at critical phases during the development of the embryo, and a variety of single and multiple skeletal deformities may thus be induced. 9. A plea is made for routine pathological and radiological examination of aborted foetuses and stillborn infants more or less on the lines followed for experimentally induced deformities with a view to applying the knowledge gained from animal experiments to a better understanding of the etiology and pathology of human congenital anomalies. 10. As regards the possible prevention of these deformities, it is not always easy to offer sound eugenic advice in the cases of congenital malformations determined partly or completely by genetic factors, for two important reasons. First, it is often difficult to distinguish between genetically determined congenital anomalies and their phenocopies. Secondly, genetically determined developmental defects sometimes show surprisingly variable expressivity and penetrance. For the conditions in which both genetic and environmental factors are involved, the most profitable immediate line of attack would be on the environmental factors. A relatively simpler problem is presented by the malformations which are, for all practical purposes, entirely caused by environmental factors. Measures to prevent congenital anomalies caused by prenatal rubella, such as exposure of girls to the disease during childhood and protection of pregnant women during the early stages of pregnancy by immune serum, are under active consideration. 11 . Further energetic investigation of the causes of permaturity, stillbirths, monstrosities and congenital malformations is urgently needed, before embarking on a successful programme for prevention. "The day of successful prophylaxis is not yet, but it is much nearer than seemed possible a few years ago."


Bone & Joint Research
Vol. 10, Issue 10 | Pages 659 - 667
1 Oct 2021
Osagie-Clouard L Meeson R Sanghani-Kerai A Bostrom M Briggs T Blunn G

Aims

A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating fracture healing.

Methods

A 1.5 mm femoral osteotomy (delayed union model) was created in 48 female juvenile Wistar rats, aged six to nine months, and stabilized using an external fixator. At day 0, animals were treated with intrafracture injections of 1 × 106 cells/kg bone marrow mesenchymal stem cells (MSCs) suspended in fibrin, daily subcutaneous injections of high (100 μg/kg) or low (25 μg/kg) dose PTH 1-34, or a combination of PTH and MSCs. A group with an empty gap served as a control. Five weeks post-surgery, the femur was excised for radiological, histomorphometric, micro-CT, and mechanical analysis.


Bone & Joint Research
Vol. 9, Issue 2 | Pages 82 - 89
1 Feb 2020
Chen Z Zhang Z Guo L Wei X Zhang Y Wang X Wei L

Chondrocyte hypertrophy represents a crucial turning point during endochondral bone development. This process is tightly regulated by various factors, constituting a regulatory network that maintains normal bone development. Histone deacetylase 4 (HDAC4) is the most well-characterized member of the HDAC class IIa family and participates in different signalling networks during development in various tissues by promoting chromatin condensation and transcriptional repression. Studies have reported that HDAC4-null mice display premature ossification of developing bones due to ectopic and early-onset chondrocyte hypertrophy. Overexpression of HDAC4 in proliferating chondrocytes inhibits hypertrophy and ossification of developing bones, which suggests that HDAC4, as a negative regulator, is involved in the network regulating chondrocyte hypertrophy. Overall, HDAC4 plays a key role during bone development and disease. Thus, understanding the role of HDAC4 during chondrocyte hypertrophy and endochondral bone formation and its features regarding the structure, function, and regulation of this process will not only provide new insight into the mechanisms by which HDAC4 is involved in chondrocyte hypertrophy and endochondral bone development, but will also create a platform for developing a therapeutic strategy for related diseases.

Cite this article: Bone Joint Res. 2020;9(2):82–89.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 412 - 420
1 Jul 2020
Hefka Blahnova V Dankova J Rampichova M Filova E

Aims

Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors.

Methods

In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 99 - 107
1 Mar 2020
Chang C Jou I Wu T Su F Tai T

Aims

Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing.

Methods

We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 139 - 147
1 Feb 2018
Takahara S Lee SY Iwakura T Oe K Fukui T Okumachi E Waki T Arakura M Sakai Y Nishida K Kuroda R Niikura T

Objectives

Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM.

Methods

Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2021;10(2):122–133.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 472 - 480
1 Oct 2019
Hjorthaug GA Søreide E Nordsletten L Madsen JE Reinholt FP Niratisairak S Dimmen S

Objectives

Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model.

Methods

A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 578 - 586
1 Sep 2020
Ma M Liang X Wang X Zhang L Cheng S Guo X Zhang F Wen Y

Aims

Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD.

Methods

The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection.


Bone & Joint 360
Vol. 9, Issue 2 | Pages 33 - 37
1 Apr 2020


Bone & Joint Research
Vol. 7, Issue 2 | Pages 179 - 186
1 Feb 2018
Wu T Zhang J Wang B Sun Y Liu Y Li G

Objectives

As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing.

Materials and Methods

Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 368 - 385
1 Jul 2020
Chow SK Chim Y Wang J Wong RM Choy VM Cheung W

A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing.

Cite this article: Bone Joint Res 2020;9(7):368–385.


Objectives

MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture.

Methods

Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 349 - 356
1 Jul 2019
Starlinger J Kaiser G Thomas A Sarahrudi K

Objectives

The osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) balance is of the utmost importance in fracture healing. The aim of this study was therefore to investigate the impact of nonosteogenic factors on OPG and RANKL levels.

Methods

Serum obtained from 51 patients with long bone fractures was collected over 48 weeks. The OPG and serum sRANKL (soluble RANKL) concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Smoking habit, diabetes, and alcohol consumption were recorded.


Bone & Joint Research
Vol. 8, Issue 6 | Pages 255 - 265
1 Jun 2019
Hernigou J Schuind F

Objectives

The aim of this study was to review the impact of smoking tobacco on the musculoskeletal system, and on bone fractures in particular.

Methods

English-language publications of human and animal studies categorizing subjects into smokers and nonsmokers were sourced from MEDLINE, The Cochrane Library, and SCOPUS. This review specifically focused on the risk, surgical treatment, and prevention of fracture complications in smokers.


Bone & Joint Research
Vol. 8, Issue 3 | Pages 107 - 117
1 Mar 2019
Lim ZXH Rai B Tan TC Ramruttun AK Hui JH Nurcombe V Teoh SH Cool SM

Objectives

Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done.

Methods

We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses.


Bone & Joint Research
Vol. 2, Issue 2 | Pages 41 - 50
1 Feb 2013
Cottrell JA Keshav V Mitchell A O’Connor JP

Objectives

Recent studies have shown that modulating inflammation-related lipid signalling after a bone fracture can accelerate healing in animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity during fracture healing increases cyclooxygenase-2 (COX-2) expression in the fracture callus, accelerates chondrogenesis and decreases healing time. In this study, we test the hypothesis that 5-LO inhibition will increase direct osteogenesis.

Methods

Bilateral, unicortical femoral defects were used in rats to measure the effects of local 5-LO inhibition on direct osteogenesis. The defect sites were filled with a polycaprolactone (PCL) scaffold containing 5-LO inhibitor (A-79175) at three dose levels, scaffold with drug carrier, or scaffold only. Drug release was assessed in vitro. Osteogenesis was assessed by micro-CT and histology at two endpoints of ten and 30 days.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim

Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage.

Patients and Methods

Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID).


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116


Bone & Joint Research
Vol. 7, Issue 1 | Pages 6 - 11
1 Jan 2018
Wong RMY Choy MHV Li MCM Leung K K-H. Chow S Cheung W Cheng JCY

Objectives

The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models.

Materials and Methods

A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.

Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 425 - 433
1 Apr 2007
Little DG Ramachandran M Schindeler A

The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 572 - 576
1 Apr 2015
Polfer EM Hope DN Elster EA Qureshi AT Davis TA Golden D Potter BK Forsberg JA

Currently, there is no animal model in which to evaluate the underlying physiological processes leading to the heterotopic ossification (HO) which forms in most combat-related and blast wounds. We sought to reproduce the ossification that forms under these circumstances in a rat by emulating patterns of injury seen in patients with severe injuries resulting from blasts. We investigated whether exposure to blast overpressure increased the prevalence of HO after transfemoral amputation performed within the zone of injury. We exposed rats to a blast overpressure alone (BOP-CTL), crush injury and femoral fracture followed by amputation through the zone of injury (AMP-CTL) or a combination of these (BOP-AMP). The presence of HO was evaluated using radiographs, micro-CT and histology. HO developed in none of nine BOP-CTL, six of nine AMP-CTL, and in all 20 BOP-AMP rats. Exposure to blast overpressure increased the prevalence of HO.

This model may thus be used to elucidate cellular and molecular pathways of HO, the effect of varying intensities of blast overpressure, and to evaluate new means of prophylaxis and treatment of heterotopic ossification.

Cite this article: Bone Joint J 2015;97-B:572–6


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1144 - 1151
1 Aug 2015
Waki T Lee SY Niikura T Iwakura T Dogaki Y Okumachi E Kuroda R Kurosaka M

MicroRNAs (miRNAs ) are small non-coding RNAs that regulate gene expression. We hypothesised that the functions of certain miRNAs and changes to their patterns of expression may be crucial in the pathogenesis of nonunion. Healing fractures and atrophic nonunions produced by periosteal cauterisation were created in the femora of 94 rats, with 1:1 group allocation. At post-fracture days three, seven, ten, 14, 21 and 28, miRNAs were extracted from the newly generated tissue at the fracture site. Microarray and real-time polymerase chain reaction (PCR) analyses of day 14 samples revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p, were highly upregulated in nonunion. Real-time PCR analysis further revealed that, in nonunion, the expression levels of all five of these miRNAs peaked on day 14 and declined thereafter.

Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p may play an important role in the development of nonunion. These findings add to the understanding of the molecular mechanism for nonunion formation and may lead to the development of novel therapeutic strategies for its treatment.

Cite this article: Bone Joint J 2015; 97-B:1144–51.


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 987 - 992
1 Jul 2017
Shohat N Gilat R Shitrit R Smorgick Y Beer Y Agar G

Aims

To assess the long-term effect of distal trochanteric transfer (DTT) on the clinical and radiographic outcomes of patients with Legg-Calvé-Perthes’ disease (LCPD) following a varus derotational osteotomy (VDRO).

Patients and Methods

For this single centre cross-sectional retrospective study we analysed the data of 22 patients (24 hips) with LCPD who had greater trochanteric overgrowth (GTO), following a VDRO performed in our institution between 1959 and 1983. GTO was defined as an articular trochanteric distance (ATD) of < 5 mm. We compared the radiographic and clinical outcomes of patients who underwent DTT for GTO (ten patients, ten hips) with those who did not (12 patients, 14 hips). Age at presentation was 6.9 years (4 to 10) and 8.0 years (3.2 to 12) respectively. Symptoms associated with the hip and general quality of life were assessed using the Harris hip score (HHS) and the Short Form (SF)-36 questionnaires.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 144 - 153
1 Mar 2017
Kharwadkar N Mayne B Lawrence JE Khanduja V

Objectives

Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs.

Methods

We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 594 - 601
1 Dec 2016
Li JJ Wang BQ Fei Q Yang Y Li D

Objectives

In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis.

Methods

We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 73 - 81
1 Feb 2017
Ishihara K Okazaki K Akiyama T Akasaki Y Nakashima Y

Objectives

Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts.

Methods

Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 568 - 573
1 Apr 2013
Pichler K Herbert V Schmidt B Fischerauer EE Leithner A Weinberg A

Matrix metalloproteinases (MMPs), responsible for extracellular matrix remodelling and angiogenesis, might play a major role in the response of the growth plate to detrimental loads that lead to overuse injuries in young athletes. In order to test this hypothesis, human growth plate chondrocytes were subjected to mechanical forces equal to either physiological loads, near detrimental or detrimental loads for two hours. In addition, these cells were exposed to physiological loads for up to 24 hours. Changes in the expression of MMPs -2, -3 and -13 were investigated.

We found that expression of MMPs in cultured human growth plate chondrocytes increases in a linear manner with increased duration and intensity of loading. We also showed for the first time that physiological loads have the same effect on growth plate chondrocytes over a long period of time as detrimental loads applied for a short period.

These findings confirm the involvement of MMPs in overuse injuries in children. We suggest that training programmes for immature athletes should be reconsidered in order to avoid detrimental stresses and over-expression of MMPs in the growth plate, and especially to avoid physiological loads becoming detrimental.

Cite this article: Bone Joint J 2013;95-B:568–73.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 6 - 9
1 Jan 2016
Fillingham Y Jacobs J

The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):6–9.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1122 - 1129
1 Aug 2007
Watanabe K Tsuchiya H Sakurakichi K Tomita K

The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone.

Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1625 - 1631
1 Dec 2012
Li LY Zhang LJ Li QW Zhao Q Jia JY Huang T

The purpose of this study was to investigate the development of the osseous acetabular index (OAI) and cartilaginous acetabular index (CAI) using MRI. The OAI and CAI were measured on the coronal MR images of the hip in 81 children with developmental dysplasia of the hip (DDH), with a mean age of 19.6 months (3 to 70), and 241 normal control children with a mean age of 5.1 years (1 month to 12.5 years). Additionally the developmental patterns of the OAI and CAI in normal children were determined by age-based cross-sectional analysis.

Unlike the OAI, the normal CAI decreased rapidly from a mean of 10.17° (sd 1.60) to a mean of 8.25° (sd 1.90) within the first two years of life, and then remained constant at a mean of 8.04° (sd 1.65) until adolescence. Although no difference in OAI was found between the uninvolved hips in children with unilateral DDH and normal hips (p = 0.639), the CAI was significantly different between them both (p < 0.001). The normal CAI has fully formed at birth, and is maintained constantly throughout childhood. The CAI in the unaffected hips in children with unilateral DDH is also mildly dysplastic.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1553 - 1560
1 Dec 2007
Gaston MS Simpson AHRW

This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1617 - 1622
1 Dec 2008
Axelrad TW Steen B Lowenberg DW Creevy WR Einhorn TA

Heterotopic ossification occurring after the use of commercially available bone morphogenetic proteins has not been widely reported. We describe four cases of heterotopic ossification in patients treated with either recombinant bone morphogenetic protein 2 or recombinant bone morphogenetic protein 7. We found that while some patients were asymptomatic, heterotopic ossification which had occurred around a joint often required operative excision with good results.


Bone & Joint Research
Vol. 4, Issue 2 | Pages 17 - 22
1 Feb 2015
Vo A Beaule PE Sampaio ML Rotaru C Rakhra KS

Objectives

The purpose of this study was to investigate whether the femoral head–neck contour, characterised by the alpha angle, varies with the stage of physeal maturation using MRI evaluation of an asymptomatic paediatric population.

Methods

Paediatric volunteers with asymptomatic hips were recruited to undergo MRI of both hips. Femoral head physes were graded from 1 (completely open) to 6 (completely fused). The femoral head–neck contour was evaluated using the alpha angle, measured at the 3:00 (anterior) and 1:30 (anterosuperior) positions and correlated with physeal grade, with gender sub-analysis performed.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 569 - 573
1 May 2014
Sullivan MP McHale KJ Parvizi J Mehta S

Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone–implant interactions.

Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation.

Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.

Cite this article: Bone Joint J 2014; 96-B: 569–73.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1127 - 1133
1 Aug 2005
Cho T Choi IH Chung CY Yoo WJ Lee KS

The bicompartmental acetabulum is one of the morphological changes which may be seen in children with Legg-Calvé-Perthes’ disease. Three-dimensional CT and MRI were used to analyse the detailed morphology of the acetabulum with special reference to its inner surface, in 16 patients with Perthes’ disease and a bicompartmental acetabulum.

The bicompartmental appearance was seen on the coronal plane image through the acetabular fossa. The lunate surface was seen to grow laterally resulting in an increased mediolateral thickness of the triradiate cartilage. On the horizontal plane images, the acetabular fossa had deepened and had a distinct prominence at its posterior border. The combination of these morphological changes resulted in a bicompartmental appearance on plain radiography. Acetabular bicompartmentalisation appears to be the result of an imbalance of growth between the cartilage-covered lunate surface and the cartilage-devoid acetabular fossa.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 710 - 715
1 May 2005
van Huyssteen AL Hastings CJ Olesak M Hoffman EB

We reviewed 34 knees in 24 children after a double-elevating osteotomy for late-presenting infantile Blount’s disease. The mean age of patients was 9.1 years (7 to 13.5).

All knees were in Langenskiöld stages IV to VI. The operative technique corrected the depression of the medial joint line by an elevating osteotomy, and the remaining tibial varus and internal torsion by an osteotomy just below the apophysis. In the more recent patients (19 knees), a proximal lateral tibial epiphysiodesis was performed at the same time.

The mean pre-operative angle of depression of the medial tibial plateau of 49° (40° to 60°) was corrected to a mean of 26° (20° to 30°), which was maintained at follow-up. The femoral deformity was too small to warrant femoral osteotomy in any of our patients. The mean pre-operative mechanical varus of 30.6° (14° to 66°) was corrected to 0° to 5° of mechanical valgus in 29 knees. In five knees, there was an undercorrection of 2° to 5° of mechanical varus. At follow-up a further eight knees, in which lateral epiphysiodesis was delayed beyond five months, developed recurrent tibial varus associated with fusion of the medial proximal tibial physis.


Bone & Joint 360
Vol. 2, Issue 4 | Pages 22 - 24
1 Aug 2013

The August 2013 Trauma Roundup360 looks at: reverse oblique fractures do better with a cephalomedullary device; locking screws confer no advantage in tibial plateau fractures; it’s all about the radius of curvature; radius of curvature revisited; radial head replacement in complex elbow reconstruction; stem cells in early fracture haematoma; heterotrophic ossification in forearms; and Boston in perspective.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1288 - 1291
1 Sep 2012
Sanghrajka AP Hill RA Murnaghan CF Simpson AHRW Bellemore MC

We describe three cases of infantile tibia vara resulting from an atraumatic slip of the proximal tibial epiphysis upon the metaphysis. There appears to be an association between this condition and severe obesity. Radiologically, the condition is characterised by a dome-shaped metaphysis, an open growth plate and disruption of the continuity between the lateral borders of the epiphysis and metaphysis, with inferomedial translation of the proximal tibial epiphysis. All patients were treated by realignment of the proximal tibia by distraction osteogenesis with an external circulator fixator, and it is suggested that this is the optimal method for correction of this complex deformity. There are differences in the radiological features and management between conventional infantile Blount’s disease and this ‘slipped upper tibial epiphysis’ variant.


Bone & Joint Research
Vol. 3, Issue 3 | Pages 51 - 59
1 Mar 2014
Kim HJ Braun HJ Dragoo JL

Background

Resveratrol is a polyphenolic compound commonly found in the skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated by resveratrol and has been shown to promote longevity and boost mitochondrial metabolism. We examined the effect of resveratrol on normal and osteoarthritic (OA) human chondrocytes.

Methods

Normal and OA chondrocytes were incubated with various concentrations of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24, 48 or 72 hours or for six weeks. Cell proliferation, gene expression, and senescence were evaluated.


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1514 - 1520
1 Nov 2013
D’Agostino P Barbier O

The osteoinductive properties of demineralised bone matrix have been demonstrated in animal studies. However, its therapeutic efficacy has yet to be proven in humans. The clinical properties of AlloMatrix, an injectable calcium-based demineralised bone matrix allograft, were studied in a prospective randomised study of 50 patients with an isolated unstable distal radial fracture treated by reduction and Kirschner (K-) wire fixation. A total of 24 patients were randomised to the graft group (13 men and 11 women, mean age 42.3 years (20 to 62)) and 26 to the no graft group (8 men and 18 women, mean age 45.0 years (17 to 69)).

At one, three, six and nine weeks, and six and 12 months post-operatively, patients underwent radiological evaluation, assessments for range of movement, grip and pinch strength, and also completed the Disabilities of Arm, Shoulder and Hand questionnaire. At one and six weeks and one year post-operatively, bone mineral density evaluations of both wrists were performed.

No significant difference in wrist function and speed of recovery, rate of union, complications or bone mineral density was found between the two groups. The operating time was significantly higher in the graft group (p = 0.004). Radiologically, the reduction parameters remained similar in the two groups and all AlloMatrix extraosseous leakages disappeared after nine weeks.

This prospective randomised controlled trial did not demonstrate a beneficial effect of AlloMatrix demineralised bone matrix in the treatment of this category of distal radial fractures treated by K-wire fixation.

Cite this article: Bone Joint J 2013;95-B:1514–20.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1118 - 1121
1 Aug 2011
Berber O Dawson-Bowling S Jalgaonkar A Miles J Pollock RC Skinner JA Aston WJS Briggs TWR

We describe 22 cases of bizarre parosteal osteochondromatous proliferation, or Nora’s lesion. These are surface-based osteocartilaginous lesions typically affecting the hands and feet. All patients were identified from the records of a regional bone tumour unit and were treated between 1985 and 2009. Nine lesions involved the metacarpals, seven the metatarsals, one originated from a sesamoid bone of the foot and five from long bones (radius, ulna, tibia, and femur in two). The mean age of the patients was 31.8 years (6 to 66), with 14 men and eight women. Diagnosis was based on the radiological and histological features. The initial surgical treatment was excision in 21 cases and amputation of a toe in one. The mean follow-up was for 32 months (12 to 162). Recurrence occurred in six patients (27.3%), with a mean time to recurrence of 49 months (10 to 120). Two of the eight patients with complete resection margins developed a recurrence (25.0%), compared with four of 14 with a marginal or incomplete resection (28.6%).

Given the potential surgical morbidity inherent in resection, our data suggest that there may be a role for a relatively tissue-conserving approach to the excision of these lesions.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 227 - 230
1 Feb 2012
Yang T Wang T Tsai Y Huang K

In patients with traumatic brain injury and fractures of long bones, it is often clinically observed that the rate of bone healing and extent of callus formation are increased. However, the evidence has been unconvincing and an association between such an injury and enhanced fracture healing remains unclear. We performed a retrospective cohort study of 74 young adult patients with a mean age of 24.2 years (16 to 40) who sustained a femoral shaft fracture (AO/OTA type 32A or 32B) with or without a brain injury. All the fractures were treated with closed intramedullary nailing. The main outcome measures included the time required for bridging callus formation (BCF) and the mean callus thickness (MCT) at the final follow-up. Comparative analyses were made between the 20 patients with a brain injury and the 54 without brain injury. Subgroup comparisons were performed among the patients with a brain injury in terms of the severity of head injury, the types of intracranial haemorrhage and gender. Patients with a brain injury had an earlier appearance of BCF (p < 0.001) and a greater final MCT value (p < 0.001) than those without. There were no significant differences with respect to the time required for BCF and final MCT values in terms of the severity of head injury (p = 0.521 and p = 0.153, respectively), the types of intracranial haemorrhage (p = 0.308 and p = 0.189, respectively) and gender (p = 0.383 and p = 0.662, respectively).

These results confirm that an injury to the brain may be associated with accelerated fracture healing and enhanced callus formation. However, the severity of the injury to the brain, the type of intracranial haemorrhage and gender were not statistically significant factors in predicting the rate of bone healing and extent of final callus formation.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 12 | Pages 1653 - 1659
1 Dec 2011
Bordei P

Platelet-derived growth factor (PDGF) is known to stimulate osteoblast or osteoprogenitor cell activity. We investigated the effect of locally applied PDGF from poly-d,l-lactide (PDLLA)-coated implants on fracture healing in a rat model. A closed fracture of the right tibia of four-month-old Sprague-Dawley rats (n = 40) was stabilised with implants coated with a biodegradable PDLLA versus implants coated with PDLLA and PDGF. Radiographs were taken throughout the study, and a marker of DNA activity, bromodeoxyuridine (BrdU), was injected before the rats were killed at three, seven and ten days. The radiographs showed consolidation of the callus in the PDGF-treated group compared with the control group at all three time points. In the PDGF-treated group, immunohistochemical staining of BrdU showed that the distribution of proliferating cells in all cellular events was higher after ten days compared with that at three and seven days.

These results indicate that local application of PDGF from biodegradable PDLLA-coated implants significantly accelerates fracture healing in experimental animals. Further development may help fracture healing in the clinical situation.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 62 - 67
1 Jan 2012
Aurich M Hofmann GO Mückley T Mollenhauer J Rolauffs B

We attempted to characterise the biological quality and regenerative potential of chondrocytes in osteochondritis dissecans (OCD). Dissected fragments from ten patients with OCD of the knee (mean age 27.8 years (16 to 49)) were harvested at arthroscopy. A sample of cartilage from the intercondylar notch was taken from the same joint and from the notch of ten patients with a traumatic cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes were extracted and subsequently cultured. Collagen types 1, 2, and 10 mRNA were quantified by polymerase chain reaction. Compared with the notch chondrocytes, cells from the dissecate expressed similar levels of collagen types 1 and 2 mRNA. The level of collagen type 10 message was 50 times lower after cell culture, indicating a loss of hypertrophic cells or genes. The high viability, retained capacity to differentiate and metabolic activity of the extracted cells suggests preservation of the intrinsic repair capability of these dissecates. Molecular analysis indicated a phenotypic modulation of the expanded dissecate chondrocytes towards a normal phenotype. Our findings suggest that cartilage taken from the dissecate can be reasonably used as a cell source for chondrocyte implantation procedures.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1134 - 1139
1 Aug 2011
Schindeler A Birke O Yu NYC Morse A Ruys A Baldock PA Little DG

Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair.

Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient (Nf1+/−) mice and control mice. Fractures were open and featured periosteal stripping. All mice received 10 μg rhBMP-2 delivered in a carboxymethylcellulose carrier around the fracture as an anabolic stimulus. Bisphosphonate-treated mice also received five doses of 0.02 mg/kg zoledronic acid given by intraperitoneal injection.

When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in Nf1+/− mice remained ununited at three weeks compared with 7% of controls (p < 0.001). Systemic post-operative administration of zoledronic acid halved the rate of ununited fractures to 37.5% (p < 0.07).

These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthoris of the tibia and NF1.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 421 - 426
1 Mar 2011
Maličev E Barlič A Kregar-Velikonja N Stražar K Drobnič M

The aim of this study was to evaluate the cultivation potential of cartilage taken from the debrided edge of a chronic lesion of the articular surface. A total of 14 patients underwent arthroscopy of the knee for a chronic lesion on the femoral condyles or trochlea. In addition to the routine cartilage biopsy, a second biopsy of cartilage was taken from the edge of the lesion. The cells isolated from both sources underwent parallel cultivation as monolayer and three-dimensional (3D) alginate culture. The cell yield, viability, capacity for proliferation, morphology and the expressions of typical cartilage genes (collagen I, COL1; collagen II, COL2; aggrecan, AGR; and versican, VER) were assessed. The cartilage differentiation indices (COL2/COL1, AGR/VER) were calculated. The control biopsies revealed a higher mean cell yield (1346 cells/mg vs 341 cells/mg), but similar cell proliferation, viability and morphology compared with the cells from the edge of the lesion. The cartilage differentiation indices were superior in control cells: COL2/COL1 (threefold in biopsies (non-significant)); sixfold in monolayer cultures (p = 0.012), and 7.5-fold in hydrogels (non-significant), AGR/VER (sevenfold in biopsies (p = 0.04), threefold (p = 0.003) in primary cultures and 3.5-fold in hydrogels (non-significant)).

Our results suggest that the cultivation of chondrocytes solely from the edges of the lesion cannot be recommended for use in autologous chondrocyte implantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 253 - 257
1 Feb 2009
Manidakis N Kanakaris NK Nikolaou VS Giannoudis PV

We describe a patient in whom an initially intact sciatic nerve became rapidly encased in heterotopic bone formed in the abductor compartment after reconstruction of the posterior wall of the acetabulum following fracture. Prompt excision and neural release followed by irradiation and administration of indometacin resulted in a full neurological recovery and no recurrence 27 months later.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 259 - 263
1 Feb 2009
Dimmen S Nordsletten L Engebretsen L Steen H Madsen JE

Conventional non-steroidal anti-inflammatory drugs (NSAIDs) and newer specific cyclo-oxygenase-2 (cox-2) inhibitors are commonly used in musculoskeletal trauma and orthopaedic surgery to reduce the inflammatory response and pain. These drugs have been reported to impair bone metabolism. In reconstruction of the anterior cruciate ligament the hamstring tendons are mainly used as the graft of choice, and a prerequisite for good results is healing of the tendons in the bone tunnel. Many of these patients are routinely given NSAIDs or cox-2 inhibitors, although no studies have elucidated the effects of these drugs on tendon healing in the bone tunnel.

In our study 60 female Wistar rats were randomly allocated into three groups of 20. One received parecoxib, one indometacin and one acted as a control. In all the rats the tendo-Achillis was released proximally from the calf muscles. It was then pulled through a drill hole in the distal tibia and sutured anteriorly. The rats were given parecoxib, indometacin or saline intraperitoneally twice daily for seven days. After 14 days the tendon/bone-tunnel interface was subjected to mechanical testing.

Significantly lower maximum pull-out strength (p < 0.001), energy absorption (p < 0.001) and stiffness (p = 0.035) were found in rats given parecoxib and indometacin compared with the control group, most pronounced with parecoxib.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1539 - 1544
1 Nov 2007
Hibino N Hamada Y Sairyo K Yukata K Sano T Yasui N

This study was undertaken to elucidate the mechanism of biological repair at the tendon-bone junction in a rat model. The stump of the toe flexor tendon was sutured to a drilled hole in the tibia (tendon suture group, n = 23) to investigate healing of the tendon-bone junction both radiologically and histologically. Radiological and histological findings were compared with those observed in a sham control group where the bone alone was drilled (n = 19). The biomechanical strength of the repaired junction was confirmed by pull-out testing six weeks after surgery in four rats in the tendon suture group. Callus formation was observed at the site of repair in the tendon suture group, whereas in the sham group callus formation was minimal. During the pull-out test, the repaired tendon-bone junction did not fail because the musculotendinous junction always disrupted first.

In order to understand the factors that influenced callus formation at the site of repair, four further groups were evaluated. The nature of the sutured tendon itself was investigated by analysing healing of a tendon stump after necrosis had been induced with liquid nitrogen in 16 cases. A proximal suture group (n = 16) and a partial tenotomy group (n = 16) were prepared to investigate the effects of biomechanical loading on the site of repair. Finally, a group where the periosteum had been excised at the site of repair (n = 16) was examined to study the role of the periosteum. These four groups showed less callus formation radiologically and histologically than did the tendon suture group.

In conclusion, the sutured tendon-bone junction healed and achieved mechanical strength at six weeks after suturing, showing good local callus formation. The viability of the tendon stump, mechanical loading and intact periosteum were all found to be important factors for better callus formation at a repaired tendon-bone junction.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1541 - 1547
1 Dec 2008
Bush PG Hall AC Macnicol MF

The mammalian growth plate is a complex structure which is essential for the elongation of long bones. However, an understanding of how the growth plate functions at the cellular level is lacking. This review, summarises the factors involved in growth-plate regulation, its failure and the consequence of injury. We also describe some of the cellular mechanisms which underpin the increase in volume of the growth-plate chondrocyte which is the major determinant of the rate and extent of bone lengthening. We show how living in situ chondrocytes can be imaged using 2-photon laser scanning microscopy to provide a quantitative analysis of their volume. This approach should give better understanding of the cellular control of bone growth in both healthy and failed growth plates.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 57 - 61
1 Jan 2007
Lee ST Song HR Mahajan R Makwana V Suh SW Lee SH

Genu varum in the achondroplastic patient has a complex and multifactorial aetiology. There is little mention in the literature of the role of fibular overgrowth. Using the ratio of fibular to tibial length as a measurement of possible fibular overgrowth, we have related it to the development of genu varum. Full-length standing anteroposterior radiographs of 53 patients with achondroplasia were analysed. There were 30 skeletally-immature and 23 skeletally-mature patients. Regression analysis was performed in order to determine if there was a causal relationship between fibular overgrowth and the various indices of alignment of the lower limb.

Analysis showed that the fibular to tibial length ratio had a significant correlation with the medial proximal tibial angle and the mechanical axial deviation in the skeletally-immature group. We conclude that there is a significant relationship between fibular overgrowth and the development of genu varum in the skeletally-immature achondroplastic patient.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 133 - 138
1 Jan 2007
Oe K Miwa M Sakai Y Lee SY Kuroda R Kurosaka M

We isolated multilineage mesenchymal progenitor cells from haematomas collected from fracture sites. After the haematoma was manually removed from the fracture site it was cut into strips and cultured. Homogenous fibroblastic adherent cells were obtained. Flow cytometry revealed that the adherent cells were consistently positive for mesenchymal stem-cell-related markers CD29, CD44, CD105 and CD166, and were negative for the haemopoietic markers CD14, CD34, CD45 and CD133 similar to bone-marrow-derived mesenchymal stem cells. In the presence of lineage-specific induction factors the adherent cells could differentiate in vitro into osteogenic, chondrogenic and adipogenic cells.

Our results indicate that haematomas found at a fracture site contain multilineage mesenchymal progenitor cells and play an important role in bone healing. Our findings imply that to enhance healing the haematoma should not be removed from the fracture site during osteosynthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 977 - 983
1 Jul 2007
Lee JH Prakash KVB Pengatteeri YH Park SE Koh HS Han CW

We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis in situ using TUNEL staining, and was confirmed using caspase-3 staining along with quantification of the total cellularity. The mean articular defect filling index decreased with time. After 24 weeks it was 0.7 (sd 0.10), which was significantly lower than the measurements obtained earlier (p < 0.01). The highest mean percentage of apoptotic cells were observed at 12 weeks, although the total cellularity decreased with time. Because apoptotic cell death may play a role in delamination after chondrocyte transplantation, anti-apoptotic gene therapy may protect transplanted chondrocytes from apoptosis.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 565 - 576
1 May 2009
Getgood A Brooks R Fortier L Rushton N

Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.