Advertisement for orthosearch.org.uk
Results 1 - 36 of 36
Results per page:

Objective. To study the effect of hyaluronic acid (HA) on local anaesthetic chondrotoxicity in vitro. Methods. Chondrocytes were harvested from bovine femoral condyle cartilage and isolated using collagenase-containing media. At 24 hours after seeding 15 000 cells per well onto a 96-well plate, chondrocytes were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS, 1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):HA, 1:1 bupivacaine (0. 5%):HA, or 1:1 HA:PBS for one hour. Following treatment, groups had conditions removed and 24-hour incubation. Cell viability was assessed using PrestoBlue and confirmed visually using fluorescence microscopy. Results. Media-treated groups had a mean of 1.55×10. 4. cells/well (. sem. 783). All treated cells showed statistically significant reduced viability when compared with media alone (all p < 0.003). Cells treated with bupivacaine + HA (6.70×10. 3. cells/well (. sem. 1.10×10. 3. )) survived significantly more than bupivacaine (2.44×10. 3. cells/well (. sem . 830)) (p < 0.001). Lidocaine + HA (1.45×10. 3. cells/well (. sem. 596)) was not significantly more cytotoxic than lidocaine (2.24×10. 3. cells/well (. sem. 341)) (p = 0.999). There was no statistical difference between the chondrotoxicities of PBS (8.49×10. 3. cells/well (. sem. 730) cells/well) and HA (4.75×10. 3. cells/well (. sem. 886)) (p = 0.294). Conclusions. HA co-administration reduced anaesthetic cytotoxicity with bupivacaine but not lidocaine, suggesting different mechanisms of injury between the two. Co-administered intra-articular injections of HA with bupivacaine, but not lidocaine, may protect articular chondrocytes from local anaesthetic-associated death. Cite this article: Bone Joint Res 2013;2:270–5


Bone & Joint Research
Vol. 8, Issue 2 | Pages 41 - 48
1 Feb 2019
Busse P Vater C Stiehler M Nowotny J Kasten P Bretschneider H Goodman SB Gelinsky M Zwingenberger S

Objectives

Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro.

Methods

Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 483 - 486
1 May 1997
Aizawa T Kokubun S Tanaka Y

The growth plates of the femoral head of Japanese white rabbits aged 5, 10, 15 and 20 weeks were stained for apoptotic and proliferating chondrocytes using the TUNEL and PCNA antibody staining techniques. Both TUNEL- and PCNA-positive chondrocytes were detected in all of the specimens. The positive ratios of both stainings were calculated for the whole plate and for the resting, proliferating and hypertrophic zones. The highest ratios in both stainings occurred in the hypertrophic zone in all age groups. With growth, the TUNEL-positive ratio increased whereas the proliferating ratio decreased.

We suggest that the increase in chondrocytic death by apoptosis and the decrease in cell proliferation potential led to closure of the growth plate.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 310 - 316
1 Nov 2014
Tomaszewski R Bohosiewicz J Gap A Bursig H Wysocka A

Objectives

The aim of this experimental study on New Zealand’s white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics.

Methods

An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1110 - 1114
1 Aug 2007
Biant LC Bentley G

Implantation of autologous chondrocytes and matrix autologous chondrocytes are techniques of cartilage repair used in the young adult knee which require harvesting of healthy cartilage and which may cause iatrogenic damage to the joint. This study explores alternative sources of autologous cells. Chondrocytes obtained from autologous bone-marrow-derived cells and those from the damaged cartilage within the lesion itself are shown to be viable alternatives to harvest-derived cells. A sufficient number and quality of cells were obtained by the new techniques and may be suitable for autologous chondrocyte and matrix autologous chondrocyte implantation


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 128 - 134
1 Jan 2005
Goldberg AJ Lee DA Bader DL Bentley G

An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous extracellular matrix by human chondrocytes used in ACI. Chondrocytes surplus to clinical requirements for ACI from 24 patients were pelleted and cultured in either DMEM (Dulbecco’s modified eagles medium)/ITS+Premix/TGF-β1 or DMEM/10%FCS (fetal calf serum) and were subsequently analysed biochemically and morphologically. Pellets cultured in DMEM/ITS+/TGF-β1 stained positively for type-II collagen, while those maintained in DMEM/10%FCS expressed type-I collagen. The pellets cultured in DMEM/ITS+/TGF-β1 were larger and contained significantly greater amounts of DNA and glycosaminoglycans. This study suggests that the use of a defined medium containing TGF-β is necessary to induce the re-expression of a differentiated chondrocytic phenotype and the subsequent stimulation of glycosaminoglycan and type-II collagen production by human monolayer expanded chondrocytes


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 880 - 887
1 Sep 1998
Aizawa T Roach HI Kokubun S Tanaka Y

Chondrocytes of the growth plate are generally assumed to undergo apoptosis, but the mechanisms which induce this cell death are not known. The Fas receptor is a mediator of the apoptotic signal in some systems. We studied its expression in situ in growth plates of rabbits aged from five to 20 weeks. In addition, we investigated the immunolocalisation in the growth plates of the bone proteins, osteonectin and osteocalcin, and the changes in their expression with age. The Fas-positive chondrocytes were found mostly in the hypertrophic zone, as were the osteonectin-positive and osteocalcin-positive cells. The percentage of Fas-positive cells increased with age whereas little change was found in the number of osteonectin-positive and osteocalcin-positive chondrocytes. Many of the Fas-positive chondrocytes were also TUNEL-positive. This strongly suggests that apoptosis in the growth plate is mediated through the Fas system. Double immunostaining for osteocalcin and Fas showed that not all hypertrophic chondrocytes were of the same cell type. Some chondrocytes stained for osteocalcin only, others for Fas only, while some were positive for both


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 4 | Pages 601 - 613
1 May 2000
Roach HI Clarke NMP

Chondrocytes at the lower zone of the growth plate must be eliminated to facilitate longitudinal growth; this is generally assumed to involve apoptosis. We attempted to provide definitive electron-microscopic evidence of apoptosis in chondrocytes of physes and chondroepiphyses in the rabbit. We were, however, unable to find a single chondrocyte with the ultrastructure of ‘classical’ apoptosis in vivo, although such a cell was found in vitro. Instead, condensed chondrocytes had a convoluted nucleus with patchy chromatin condensations while the cytoplasm was dark with excessive amounts of endoplasmic reticulum. These cells were termed ‘dark chondrocytes’. A detailed study of their ultrastructure combined with localisation methods in situ suggested a different mechanism of programmed cell death. In addition, another type of death was identified among the immature chondrocytes of the chondroepiphysis. These cells had the same nucleus as dark chondrocytes, but the lumen of the endoplasmic reticulum had expanded to fill the entire non-nuclear space, and all cytoplasm and organelles had been reduced to dark, worm-like inclusions. Since these cells appeared to be ‘in limbo’, they were termed ‘paralysed’ cells. It is proposed that ‘dark chondrocytes’ and ‘paralysed cells’ are examples of physiological cell death which does not involve apoptosis. It is possible that the confinement of chondrocytes within their lacunae, which would prevent phagocytosis of apoptotic bodies, necessitates different mechanisms of elimination


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 824 - 830
1 Sep 1997
Yasui N Sato M Ochi T Kimura T Kawahata H Kitamura Y Nomura S

We developed a rat model of limb lengthening to study the basic mechanism of distraction osteogenesis, using a small monolateral external fixator. In 11-week-old male rats we performed a subperiosteal osteotomy in the midshaft of the femur with distraction at 0.25 mm every 12 hours from seven days after operation. Radiological and histological examinations showed a growth zone of constant thickness in the middle of the lengthened segment, with formation of new bone at its proximal and distal ends. Osteogenic cells were arranged longitudinally along the tension vector showing the origin and the fate of individual cells in a single section. Typical endochondral bone formation was prominent in the early stage of distraction, but intramembraneous bone formation became the predominant mechanism of ossification at later stages. We also showed a third mechanism of ossification, ‘transchondroid bone formation’. Chondroid bone, a tissue intermediate between bone and cartilage, was formed directly by chondrocyte-like cells, with transition from fibrous tissue to bone occurring gradually and consecutively without capillary invasion. In situ hybridisation using digoxigenin-11-UTP-labelled complementary RNAs showed that the chondroid bone cells temporarily expressed type-II collagen mRNA. They did not show the classical morphological characteristics of chondrocytes, but were assumed to be young chondrocytes undergoing further differentiation into bone-forming cells. We found at least three different modes of ossification during bone lengthening by distraction osteogenesis. We believe that this is the first report of such a rat model, and have shown the validity of in situ hybridisation techniques for the study of the cellular and molecular mechanisms involved in distraction osteogenesis


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.


Bone & Joint Research
Vol. 7, Issue 11 | Pages 587 - 594
1 Nov 2018
Zhang R Li G Zeng C Lin C Huang L Huang G Zhao C Feng S Fang H

Objectives

The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known.

Methods

In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim

Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage.

Patients and Methods

Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID).


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives

This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model.

Methods

Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR).


Bone & Joint Research
Vol. 3, Issue 3 | Pages 51 - 59
1 Mar 2014
Kim HJ Braun HJ Dragoo JL

Background

Resveratrol is a polyphenolic compound commonly found in the skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated by resveratrol and has been shown to promote longevity and boost mitochondrial metabolism. We examined the effect of resveratrol on normal and osteoarthritic (OA) human chondrocytes.

Methods

Normal and OA chondrocytes were incubated with various concentrations of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24, 48 or 72 hours or for six weeks. Cell proliferation, gene expression, and senescence were evaluated.


Bone & Joint Research
Vol. 5, Issue 6 | Pages 218 - 224
1 Jun 2016
Cheng N Guo A Cui Y

Objectives

Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA.

Methods

Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 196 - 203
1 Apr 2017
Jin Y Chen X Gao ZY Liu K Hou Y Zheng J

Objectives

This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA).

Methods

Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed paired t-test.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 523 - 530
1 Oct 2016
Yuan Y Zhang GQ Chai W Ni M Xu C Chen JY

Objectives

Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage.

Materials and Methods

Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1.


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives

The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity.

Methods

A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 409 - 416
1 Mar 2009
Anders JO Mollenhauer J Beberhold A Kinne RW Venbrocks RA

The gelatin-based haemostyptic compound Spongostan was tested as a three-dimensional (3D) chondrocyte matrix in an in vitro model for autologous chondrocyte transplantation using cells harvested from bovine knees. In a control experiment of monolayer cultures, the proliferation or de-differentiation of bovine chondrocytes was either not or only marginally influenced by the presence of Spongostan (0.3 mg/ml).

In monolayers and 3-D Minusheet culture chambers, the cartilage-specific differentiation markers aggrecan and type-II collagen were ubiquitously present in a cell-associated fashion and in the pericellular matrix. The Minusheet cultures usually showed a markedly higher mRNA expression than monolayer cultures irrespective of whether Spongostan had been present or not during culture. Although the de-differentiation marker type-I collagen was also present, the ratio of type-I to type-II collagen or aggrecan to type-I collagen remained higher in Minusheet 3-D cultures than in monolayer cultures irrespective of whether Spongostan had been included in or excluded from the monolayer cultures. The concentration of GAG in Minusheet cultures reached its maximum after 14 days with a mean of 0.83 ± 0.8 μg/106 cells; mean ±, sem, but remained considerably lower than in monolayer cultures with/without Spongostan.

Our results suggest that Spongostan is in principle suitable as a 3-D chondrocyte matrix, as demonstrated in Minusheet chambers, in particular for a culture period of 14 days. Clinically, differentiating effects on chondrocytes, simple handling and optimal formability may render Spongostan an attractive 3-D scaffold for autologous chondrocyte transplantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1245 - 1248
1 Sep 2008
Xia Z Murray D Hulley PA Triffitt JT Price AJ

Human articular cartilage samples were retrieved from the resected material of patients undergoing total knee replacement. Samples underwent automated controlled freezing at various stages of preparation: as intact articular cartilage discs, as minced articular cartilage, and as chondrocytes immediately after enzymatic isolation from fresh articular cartilage. Cell viability was examined using a LIVE/DEAD assay which provided fluorescent staining. Isolated chondrocytes were then cultured and Alamar blue assay was used for estimation of cell proliferation at days zero, four, seven, 14, 21 and 28 after seeding. The mean percentage viabilities of chondrocytes isolated from group A (fresh, intact articular cartilage disc samples), group B (following cryopreservation and then thawing, after initial isolation from articular cartilage), group C (from minced cryopreserved articular cartilage samples), and group D (from cryopreserved intact articular cartilage disc samples) were 74.7% (95% confidence interval (CI) 73.1 to 76.3), 47.0% (95% CI 43 to 51), 32.0% (95% CI 30.3 to 33.7) and 23.3% (95% CI 22.1 to 24.5), respectively. Isolated chondrocytes from all groups were expanded by the following mean proportions after 28 days of culturing: group A ten times, group B 18 times, group C 106 times, and group D 154 times.

This experiment demonstrated that it is possible to isolate viable chondrocytes from cryopreserved intact human articular cartilage which can then be successfully cultured.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1660 - 1665
1 Dec 2006
Surendran S Kim SH Jee BK Ahn SH Gopinathan P Han CW

We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene in vitro using a retrovirus vector. Samples of articular cartilage were obtained from 11 patients with a mean age of 69 years (61 to 75) who were undergoing total knee replacement for osteoarthritis. The Bcl-2-gene-transfected chondrocytes were compared with non-transfected and lac-Z-gene-transfected chondrocytes, both of which were used as controls. All three groups of cultured chondrocytes were incubated with nitric oxide (NO) for ten days. Using the Trypan Blue exclusion assay, an enzyme-linked immunosorbent assay and flow cytometric analysis, we found that the number of apoptotic chondrocytes was significantly higher in the non-transfected and lac-Z-transfected groups than in the Bcl-2-transfected group (p < 0.05). The Bcl-2-transfected chondrocytes were protected from NO-induced impairment of proteoglycan synthesis.

We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 989 - 994
1 Jul 2014
Ozturk AM Ergun MA Demir T Gungor I Yilmaz A Kaya K

Ketamine has been used in combination with a variety of other agents for intra-articular analgesia, with promising results. However, although it has been shown to be toxic to various types of cell, there is no available information on the effects of ketamine on chondrocytes.

We conducted a prospective randomised controlled study to evaluate the effects of ketamine on cultured chondrocytes isolated from rat articular cartilage. The cultured cells were treated with 0.125 mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for 6 h, 24 hours and 48 hours, and compared with controls. Changes of apoptosis were evaluated using fluorescence microscopy with a 490 nm excitation wavelength. Apoptosis and eventual necrosis were seen at each concentration. The percentage viability of the cells was inversely proportional to both the duration and dose of treatment (p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely toxic.

We concluded that in the absence of solid data to support the efficacy of intra-articular ketamine for the control of pain, and the toxic effects of ketamine on cultured chondrocytes shown by this study, intra-articular ketamine, either alone or in combination with other agents, should not be used to control pain.

Cite this article: Bone Joint J 2014; 96-B:989–94.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis.

All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage.

Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1143 - 1149
1 Aug 2005
Akmal M Singh A Anand A Kesani A Aslam N Goodship A Bentley G

The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism in vitro. The clinical benefits of intra-articular hyaluronic acid injections are thought to occur through improved joint lubrication. Recent findings have shown that exogenous hyaluronic acid is incorporated into articular cartilage where it may have a direct biological effect on chondrocytes through CD44 receptors.

Bovine articular chondrocytes were isolated and seeded into alginate constructs. These were cultured in medium containing hyaluronic acid at varying concentrations. Samples were assayed for biochemical and histological changes.

There was a dose-dependent response to the exposure of hyaluronic acid to bovine articular chondrocytes in vitro. Low concentrations of hyaluronic acid (0.1 mg/mL and 1 mg/mL) significantly increase DNA, sulphated glycosaminoglycan and hydroxyproline synthesis. Immunohistology confirmed the maintenance of cell phenotype with increased matrix deposition of chondroitin-6-sulphate and collagen type II. These findings confirm a stimulatory effect of hyaluronic acid on chondrocyte metabolism.


Bone & Joint Research
Vol. 3, Issue 2 | Pages 32 - 37
1 Feb 2014
Singh A Goel SC Gupta KK Kumar M Arun GR Patil H Kumaraswamy V Jha S

Introduction

Osteoarthritis (OA) is a progressively debilitating disease that affects mostly cartilage, with associated changes in the bone. The increasing incidence of OA and an ageing population, coupled with insufficient therapeutic choices, has led to focus on the potential of stem cells as a novel strategy for cartilage repair.

Methods

In this study, we used scaffold-free mesenchymal stem cells (MSCs) obtained from bone marrow in an experimental animal model of OA by direct intra-articular injection. MSCs were isolated from 2.8 kg white New Zealand rabbits. There were ten in the study group and ten in the control group. OA was induced by unilateral transection of the anterior cruciate ligament of the knee joint. At 12 weeks post-operatively, a single dose of 1 million cells suspended in 1 ml of medium was delivered to the injured knee by direct intra-articular injection. The control group received 1 ml of medium without cells. The knees were examined at 16 and 20 weeks following surgery. Repair was investigated radiologically, grossly and histologically using haematoxylin and eosin, Safranin-O and toluidine blue staining.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1670 - 1674
1 Dec 2006
Rogers BA Murphy CL Cannon SR Briggs TWR

The weight-bearing status of articular cartilage has been shown to affect its biochemical composition. We have investigated the topographical variation of sulphated glycosaminoglycan (GAG) relative to the DNA content of the chondrocyte in human distal femoral articular cartilage.

Paired specimens of distal femoral articular cartilage, from weight-bearing and non-weight-bearing regions, were obtained from 13 patients undergoing above-knee amputation. After papain enzyme digestion, spectrophotometric GAG and fluorometric DNA assays assessed the biochemical composition of the samples. The results were analysed using a paired t-test.

Although there were no significant differences in cell density between the regions, the weight-bearing areas showed a significantly higher concentration of GAG relative to DNA when compared with non-weight-bearing areas (p = 0.02).

We conclude that chondrocytes are sensitive to their mechanical environment, and that local loading conditions influence the metabolism of the cells and hence the biochemical structure of the tissue.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 977 - 983
1 Jul 2007
Lee JH Prakash KVB Pengatteeri YH Park SE Koh HS Han CW

We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis in situ using TUNEL staining, and was confirmed using caspase-3 staining along with quantification of the total cellularity. The mean articular defect filling index decreased with time. After 24 weeks it was 0.7 (sd 0.10), which was significantly lower than the measurements obtained earlier (p < 0.01). The highest mean percentage of apoptotic cells were observed at 12 weeks, although the total cellularity decreased with time. Because apoptotic cell death may play a role in delamination after chondrocyte transplantation, anti-apoptotic gene therapy may protect transplanted chondrocytes from apoptosis.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 730 - 735
1 May 2005
Sharpe JR Ahmed SU Fleetcroft JP Martin R

In this study a combination of autologous chondrocyte implantation (ACI) and the osteochondral autograft transfer system (OATS) was used and evaluated as a treatment option for the repair of large areas of degenerative articular cartilage. We present the results at three years post-operatively. Osteochondral cores were used to restore the contour of articular cartilage in 13 patients with large lesions of the lateral femoral condyle (n = 5), medial femoral condyle (n = 7) and patella (n = 1). Autologous cultured chondrocytes were injected underneath a periosteal patch covering the cores. After one year, the patients had a significant improvement in their symptoms and after three years this level of improvement was maintained in ten of the 13 patients. Arthroscopic examination revealed that the osteochondral cores became well integrated with the surrounding cartilage. We conclude that the hybrid ACI/OATS technique provides a promising surgical approach for the treatment of patients with large degenerative osteochondral defects.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 277 - 284
1 Feb 2011
Amin AK Huntley JS Patton JT Brenkel IJ Simpson AHRW Hall AC

The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces in situ chondrocyte death following a standardised mechanical injury produced by a scalpel cut compared with the same assault and exposure to normal saline (0.9%, 285 mOsm). Human cartilage explants were exposed to normal (control) and hyperosmotic 0.9% saline solutions for five minutes before the mechanical injury to allow in situ chondrocytes to respond to the altered osmotic environment, and incubated for a further 2.5 hours in the same solutions following the mechanical injury.

Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline.

These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 448 - 453
1 Mar 2010
Benson RT McDonnell SM Knowles HJ Rees JL Carr AJ Hulley PA

The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff.

We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis).

The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears.

These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 535 - 541
1 Apr 2008
Pendegrass CJ Sundar S Oddy MJ Cannon SR Briggs T Blunn GW

We used an in vivo model to assess the use of an autogenous cancellous bone block and marrow graft for augmenting tendon reattachment to metallic implants. We hypothesised that augmentation of the tendon-implant interface with a bone block would enable retention of the graft on the implant surface, enhance biological integration, and result in more consistent functional outcomes compared with previously reported morcellised graft augmentation techniques.

A significant improvement in functional weight-bearing was observed between six and 12 weeks. The significant increase in ground reaction force through the operated limb between six and 12 weeks was greater than that reported previously with morcellised graft augmented reconstructions. Histological appearance and collagen fibre orientation with bone block augmentation more closely resembled that of an intact enthesis compared with the morcellised grafting technique. Bone block augmentation of tendon-implant interfaces results in more reliable functional and histological outcomes, with a return to pre-operative levels of weight-bearing by 24 weeks.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1278 - 1284
1 Sep 2005
Irie T Aizawa T Kokubun S

Sex hormones play important roles in the regulation of the proliferation, maturation and death of chondrocytes in the epiphyseal growth plate. We have investigated the effects of male castration on the cell kinetics of chondrocytes as defined by the numbers of proliferating and dying cells. The growth plates of normal rabbits and animals castrated at eight weeks of age were obtained at 10, 15, 20 and 25 weeks of age.

Our study suggested that castration led to an increase in apoptosis and a decrease in the proliferation of chondrocytes in the growth plate. In addition, the number of chondrocytes in the castrated rabbits was less than that of normal animals of the same age.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 873 - 878
1 Jun 2005
Oddy MJ Pendegrass CJ Goodship AE Cannon SR Briggs TWR Blunn GW

We developed an in vivo model of the attachment of a patellar tendon to a metal implant to simulate the reconstruction of an extensor mechanism after replacement of the proximal tibia. In 24 ewes, the patellar tendon was attached to a hydroxyapatite (HA)-coated titanium prosthesis. In 12, the interface was augmented with autograft containing cancellous bone and marrow. In the remaining ewes, the interface was not grafted.

Kinematic gait analysis showed nearly normal function of the joint by 12 weeks. Force-plate assessment showed a significant increase in functional weight-bearing in the grafted animals (p = 0.043). The tendon-implant interface showed that without graft, encapsulation of fibrous tissue occurred. With autograft, a developing tendon-bone-HA-implant interface was observed at six weeks and by 12 weeks a layered tendon-fibrocartilage-bone interface was seen which was similar to a direct-type enthesis.

With stable mechanical fixation, an appropriate bioactive surface and biological augmentation the development of a functional tendon-implant interface can be achieved.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1236 - 1244
1 Sep 2006
Nishimori M Deie M Kanaya A Exham H Adachi N Ochi M

Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined.

The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p < 0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1426 - 1433
1 Oct 2005
Kobayashi T Watanabe H Yanagawa T Tsutsumi S Kayakabe M Shinozaki T Higuchi H Takagishi K

Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the ex vivo expansion medium to avoid the transmission of dangerous transfectants during clinical reconstruction procedures.

Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient ex vivo expansion of human bone-marrow mesenchymal stem cells possessing multidifferentiation potential and may be better than fetal bovine serum in preserving high motility.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 672 - 685
1 May 2007
Goodrich LR Hidaka C Robbins PD Evans CH Nixon AJ

Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model.

A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated.

Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months.

Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model.

The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.