Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 907 - 913
1 Jul 2011
Ward TR Burns AW Gillespie MJ Scarvell JM Smith PN

Bicruciate-stabilised total knee replacement (TKR) aims to restore normal kinematics by replicating the function of both cruciate ligaments. We performed a prospective, randomised controlled trial in which bicruciate- and posterior-stabilised TKRs were implanted in 13 and 15 osteo-arthritic knees, respectively. The mean age of the bicruciate-stabilised group was 63.9 years (sd 10.00) and that of the posterior-stabilised group 63.2 years (sd 6.7). A control group comprised 14 normal subjects with a mean age of 67.9 years (sd 7.9). The patellar tendon angle (PTA) was measured one week pre-operatively and at seven weeks post-operatively during knee extension, flexion and step-up exercises.

At near full extension during step-up, the bicruciate-stabilised TKR produced a higher mean PTA than the posterior-stabilised TKR, indicating that the bicruciate design at least partially restored the kinematic role of the anterior cruciate ligament. The bicruciate-stabilised TKR largely restored the pre-operative kinematics, whereas the posterior-stabilised TKR resulted in a consistently lower PTA at all activities. The PTA in the pre-operative knees was higher than in the control group during the step-up and at near full knee extension. Overall, both groups generated a more normal PTA than that seen in previous studies in high knee flexion. This suggested that both designs of TKR were more effective at replicating the kinematic role of the posterior cruciate ligament than those used in previous studies.