header advert
Results 1 - 100 of 412
Results per page:
Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives. The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. Methods. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs. Results. There was no evidence of cement attachment on any of the 11 Attune trays examined. There were significant differences between Ti and CoCr PFC Sigma implants and Attune designs (p < 0.05); however, there was no significant difference between CoCr PFC Sigma RP and Attune designs (p > 0.05). There were significant differences in the design features between the investigated designs (p < 0.05). Conclusion. The majority of the earliest PFC Sigma designs showed evidence of cement, while all of the retrieved Attune trays and the majority of the RP PFC trays in this study had no cement attached. This may be attributable to the design differences of these implants, in particular in relation to the cement pockets. Our results may help explain a controversial aspect related to cement attachment in a recently introduced TKA design. Cite this article: A. Cerquiglini, J. Henckel, H. Hothi, P. Allen, J. Lewis, A. Eskelinen, J. Skinner, M. T. Hirschmann, A. J. Hart. Analysis of the Attune tibial tray backside: A comparative retrieval study. Bone Joint Res 2019;8:136–145. DOI: 10.1302/2046-3758.83.BJJ-2018-0102.R2


Bone & Joint Research
Vol. 5, Issue 12 | Pages 594 - 601
1 Dec 2016
Li JJ Wang BQ Fei Q Yang Y Li D

Objectives. In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. Methods. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs. Results. A total of three microarray studies were selected for integrated analysis. In all, 1125 genes were found to be significantly differentially expressed between osteoporosis patients and normal controls, with 373 upregulated and 752 downregulated genes. Positive regulation of the cellular amino metabolic process (gene ontology (GO): 0033240, false discovery rate (FDR) = 1.00E + 00) was significantly enriched under the GO category for biological processes, while for molecular functions, flavin adenine dinucleotide binding (GO: 0050660, FDR = 3.66E-01) and androgen receptor binding (GO: 0050681, FDR = 6.35E-01) were significantly enriched. DEGs were enriched in many osteoporosis-related signalling pathways, including those of mitogen-activated protein kinase (MAPK) and calcium. Protein-protein interaction (PPI) network analysis showed that the significant hub proteins contained ubiquitin specific peptidase 9, X-linked (Degree = 99), ubiquitin specific peptidase 19 (Degree = 57) and ubiquitin conjugating enzyme E2 B (Degree = 57). Conclusion. Analysis of gene function of identified differentially expressed genes may expand our understanding of fundamental mechanisms leading to osteoporosis. Moreover, significantly enriched pathways, such as MAPK and calcium, may involve in osteoporosis through osteoblastic differentiation and bone formation. Cite this article: J. J. Li, B. Q. Wang, Q. Fei, Y. Yang, D. Li. Identification of candidate genes in osteoporosis by integrated microarray analysis. Bone Joint Res 2016;5:594–601. DOI: 10.1302/2046-3758.512.BJR-2016-0073.R1


Bone & Joint Research
Vol. 5, Issue 6 | Pages 253 - 262
1 Jun 2016
Liu H Li W Liu YS Zhou YS

Objectives. This study aims to evaluate if micro-CT can work as a method for the 3D assessment and analysis of cancellous bone by comparing micro-CT with undecalcified histological sections in OVX rats. Methods. The mandible and tibia of sham, ovariectomised (OVX) and zoledronate-injected ovariectomised (OVX-ZOL) rats were assessed morphometrically. Specimens were scanned by micro-CT. Undecalcified histological sections were manufactured from the specimen scanned by micro-CT and stained with haematoxylin and eosin. Bivariate linear regressions and one-way analysis of variance were undertaken for statistics using SPSS 16.0.1 software. Results. There were highly significant correlations between undecalcified histological sections and micro-CT for all parameters (bone volume density (BV/TV), bone surface density (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp))in the mandible and tibia. Bone histomorphometric parameters analysed by both methods exhibited significant differences among sham, OVX, and OVX-ZOL groups. There were significant correlations between mandible and tibia in BV/TV, BS/BV, and Tb.Sp. Conclusions. Micro-CT is a complementary tool to histological sections in basic research that could improve our understanding of bone histomorphometry. The mandible can be used as an effective site to assess bone morphometry of OVX or metabolic bone disease rat models. Cite this article: H. Liu, W. Li, Y. S. Liu, Y. S. Zhou. Bone micro-architectural analysis of mandible and tibia in ovariectomised rats: A quantitative structural comparison between undecalcified histological sections and micro-CT. Bone Joint Res 2016;5:253–262


Bone & Joint Research
Vol. 6, Issue 10 | Pages 572 - 576
1 Oct 2017
Wang W Huang S Hou W Liu Y Fan Q He A Wen Y Hao J Guo X Zhang F

Objectives. Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data. Method. We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients’ BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05. Results. We identified multiple gene sets associated with BMD in one or more regions, including relevant known biological gene sets such as the Reactome Circadian Clock (GSEA p-value = 1.0 × 10. -4. for LS and 2.7 × 10. -2. for femoral necks BMD in eQTLs-based GSEA) and insulin-like growth factor receptor binding (GSEA p-value = 5.0 × 10. -4. for femoral necks and 2.6 × 10. -2. for lumbar spines BMD in meQTLs-based GSEA). Conclusion. Our results provided novel clues for subsequent functional analysis of bone metabolism, and illustrated the benefit of integrating eQTLs and meQTLs data into pathway association analysis for genetic studies of complex human diseases. Cite this article: W. Wang, S. Huang, W. Hou, Y. Liu, Q. Fan, A. He, Y. Wen, J. Hao, X. Guo, F. Zhang. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density. Bone Joint Res 2017;6:572–576


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives. Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults. Methods. A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed. Results. Both cadence and step length were reduced during slow gait compared with normal gait. Slow walking reduced flexion during standing (10.6° compared with 13.7°; p < 0.0001), and flexion range of movement (ROM) (53.1° compared with 57.3°; p < 0.0001). Slow walking also induced less adduction ROM (8.3° compared with 10.0°; p < 0.0001), rotation ROM (11.4. °. compared with 13.6. °. ; p < 0.0001), and anteroposterior translation ROM (8.5 mm compared with 10.1 mm; p < 0.0001). Conclusion. The reduced spatiotemporal measures, reduced flexion during stance, and knee ROM in all planes induced by slow walking demonstrate a stiff knee gait, similar to that previously demonstrated in osteoarthritis. Further research is required to determine if these characteristics induced in healthy knees by slow walking provide a valid model of osteoarthritic gait. Cite this article: N. Mannering, T. Young, T. Spelman, P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 2017;6:514–521. DOI: 10.1302/2046-3758.68.BJR-2016-0296.R1


Bone & Joint Research
Vol. 6, Issue 8 | Pages 481 - 488
1 Aug 2017
Caruso G Bonomo M Valpiani G Salvatori G Gildone A Lorusso V Massari L

Objectives. Intramedullary fixation is considered the most stable treatment for pertrochanteric fractures of the proximal femur and cut-out is one of the most frequent mechanical complications. In order to determine the role of clinical variables and radiological parameters in predicting the risk of this complication, we analysed the data pertaining to a group of patients recruited over the course of six years. Methods. A total of 571 patients were included in this study, which analysed the incidence of cut-out in relation to several clinical variables: age; gender; the AO Foundation and Orthopaedic Trauma Association classification system (AO/OTA); type of nail; cervical-diaphyseal angle; surgical wait times; anti-osteoporotic medication; complete post-operative weight bearing; and radiological parameters (namely the lag-screw position with respect to the femoral head, the Cleveland system, the tip-apex distance (TAD), and the calcar-referenced tip-apex distance (CalTAD)). Results. The incidence of cut-out across the sample was 5.6%, with a higher incidence in female patients. A significantly higher risk of this complication was correlated with lag-screw tip positioning in the upper part of the femoral head in the anteroposterior radiological view, posterior in the latero-lateral radiological view, and in the Cleveland peripheral zones. The tip-apex distance and the calcar-referenced tip-apex distance were found to be highly significant predictors of the risk of cut-out at cut-offs of 30.7 mm and 37.3 mm, respectively, but the former appeared more reliable than the latter in predicting the occurrence of this complication. Conclusion. The tip-apex distance remains the most accurate predictor of cut-out, which is significantly greater above a cut-off of 30.7 mm. Cite this article: G. Caruso, M. Bonomo, G. Valpiani, G. Salvatori, A. Gildone, V. Lorusso, L. Massari. A six-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures: Can the tip-apex distance (TAD) still be considered the best parameter?. Bone Joint Res 2017;6:481–488. DOI: 10.1302/2046-3758.68.BJR-2016-0299.R1


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives. This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone. Methods. A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity. Results. The average structural rigidity-based axial rigidity was well correlated with the average mechanically-derived axial rigidity results (R. 2. = 0.74). This correlation improved significantly (p < 0.0001) when the CT-based Structural Rigidity Analysis (CTRA) minimum axial rigidity was correlated to the mechanically-derived minimum axial rigidity results (R. 2. = 0.84). Tests of slopes in the mixed model regression analysis indicated a significantly steeper slope for the average axial rigidity compared with the minimum axial rigidity (p = 0.028) and a significant difference in the intercepts (p = 0.022). The CTRA average and minimum axial rigidities were correlated with the mechanically-derived average and minimum axial rigidities using paired t-test analysis (p = 0.37 and p = 0.18, respectively). Conclusions. In summary, the results of this study suggest that structural rigidity analysis of micro-CT data can be used to accurately and quantitatively measure the axial rigidity of bones with metabolic pathologies in an experimental rat model. It appears that minimum axial rigidity is a better model for measuring bone rigidity than average axial rigidity


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 908 - 914
1 Aug 2002
Yuan X Ryd L Tanner KE Lidgren L

We present a new approach for the accurate reconstruction of three-dimensional skeletal positions using roentgen single-plane photogrammetric analysis (RSPA). This technique uses a minimum of three markers embedded in each segment which allow continuous, real-time, internal skeletal movement to be measured from single-plane images, provided that the precise distance between the markers is known. A simulation study indicated that the error propagation in this approach is influenced by focus position, object position, the number of control points, the accuracy of the previous measurement of the distance between markers and the accuracy of image measurement. For reconstruction of normal movement of the knee with an input measurement error of . sd. = 0.02 mm, the rotational and translational differences between reconstructed and original movement were less than 0.27° and 0.9 mm, respectively. Our results showed that the accuracy of RSPA is sufficient for the analysis of most movement of joints. This approach can be applied in combination with force measurements for dynamic studies of the musculoskeletal system


Bone & Joint Research
Vol. 5, Issue 11 | Pages 560 - 568
1 Nov 2016
Peeters M Huang CL Vonk LA Lu ZF Bank RA Helder MN Doulabi BZ

Objectives. Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Materials and Methods. Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. Results. No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. Conclusion. For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised. Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis. Bone Joint Res 2016;5:560–568. DOI: 10.1302/2046-3758.511.BJR-2016-0033.R3


Bone & Joint Research
Vol. 5, Issue 7 | Pages 301 - 306
1 Jul 2016
Madhuri V Santhanam M Rajagopal K Sugumar LK Balaji V

Objectives. To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population. Patients and Methods. A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations. Results. In all, two of the 15 patients had compound heterozygous mutations: one a nonsense mutation c.156C>A (p.C52*) in exon 2, and the other a missense mutation c.677G>T (p.G226V) in exon 4. All others were homozygous, with three bearing a nonsense mutation c.156C>A (p.C52*) in exon 2, three a missense mutation c.233G>A (p.C78Y) in exon 2, five a missense mutation c.1010G>A (p.C337Y) in exon 5, one a nonsense mutation c.348C>A (p.Y116*) in exon 3, and one with a novel deletion mutation c.593_597delATAGA (p.Y198*) in exon 4. Conclusion. We identified a novel mutation c.593_597delATAGA (p.Y198*) in the fourth exon of the WISP3 gene. We also confirmed c.1010G>A as one of the common mutations in an Indian population with progressive pseudorheumatoid dysplasia. Cite this article: V. Madhuri, M. Santhanam, K. Rajagopal, L. K. Sugumar, V. Balaji. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198* Bone Joint Res 2016;5:301–306. DOI: 10.1302/2046-3758.57.2000520


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation. We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement. Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 760 - 767
1 Jul 2000
Watanabe H Shinozaki T Yanagawa T Aoki J Tokunaga M Inoue T Endo K Mohara S Sano K Takagishi K

We performed positron emission tomography (PET) with . 18. fluorine-fluoro-2-deoxy-D-glucose (FDG) on 55 patients with tumours involving the musculoskeletal system in order to evaluate its role in operative planning. The standardised uptake value (SUV) of FDG was calculated and, to distinguish malignancies from benign lesions, the cases were divided into high (≥ 1.9) and low (< 1.9) SUV groups. The sensitivity of PET for correctly diagnosing malignancy was 100% with a specificity of 76.9% and an overall accuracy of 83.0%. The mean SUV for metastatic lesions was twice that for primary sarcomas (p < 0.0015). Our results suggest that the SUV may be useful in differentiating malignant tumours from benign lesions. However, some of the latter, such as schwannomas, had high SUVs so that biopsy or wide resection was selected as the first operation. Thus, some other quantitative analysis may be required for preoperative planning in cases of high-SUV neurogenic benign tumours. The reverse transcription-polymerase chain reaction revealed that the RNA message of a key enzyme in glucose metabolism, phosphohexose isomerase (PHI)/autocrine motility factor, was augmented in only high FDG-uptake lesions, suggesting that a high expression of the PHI message may be associated with accumulation of FDG in musculoskeletal tumours


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 273 - 279
1 Feb 2007
Chuter GSJ Cloke DJ Mahomed A Partington PF Green SM

There are many methods for analysing wear volume in failed polyethylene acetabular components. We compared a radiological technique with three recognised ex vivo methods of measurement.

We tested 18 ultra-high-molecular-weight polyethylene acetabular components revised for wear and aseptic loosening, of which 13 had pre-revision radiographs, from which the wear volume was calculated based upon the linear wear. We used a shadowgraph technique on silicone casts of all of the retrievals and a coordinate measuring method on the components directly. For these techniques, the wear vector was calculated for each component and the wear volume extrapolated using mathematical equations. The volumetric wear was also measured directly using a fluid-displacement method. The results of each technique were compared.

The series had high wear volumes (mean 1385 mm3; 730 to 1850) and high wear rates (mean 205 mm3/year; 92 to 363). There were wide variations in the measurements of wear volume between the radiological and the other techniques. Radiograph-derived wear volume correlated poorly with that of the fluid-displacement method, co-ordinate measuring method and shadowgraph methods, becoming less accurate as the wear increased. The mean overestimation in radiological wear volume was 47.7% of the fluid-displacement method wear volume.

Fluid-displacement method, coordinate measuring method and shadowgraph determinations of wear volume were all better than that of the radiograph-derived linear measurements since they took into account the direction of wear. However, only radiological techniques can be used in vivo and remain useful for monitoring linear wear in the clinical setting.

Interpretation of radiological measurements of acetabular wear must be done judiciously in the clinical setting. In vitro laboratory techniques, in particular the fluid-displacement method, remain the most accurate and reliable methods of assessing the wear of acetabular polyethylene.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 743 - 746
1 May 2010
Colegate-Stone T Allom R Singh R Elias DA Standring S Sinha J

The aim of this study was to establish a classification system for the acromioclavicular joint using cadaveric dissection and radiological analyses of both reformatted computed tomographic scans and conventional radiographs centred on the joint. This classification should be useful for planning arthroscopic procedures or introducing a needle and in prospective studies of biomechanical stresses across the joint which may be associated with the development of joint pathology.

We have demonstrated three main three-dimensional morphological groups namely flat, oblique and curved, on both cadaveric examination and radiological assessment. These groups were recognised in both the coronal and axial planes and were independent of age.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 10 | Pages 1396 - 1401
1 Oct 2007
Hirpara KM Sullivan PJ Raheem O O’Sullivan ME

We compared the bulking and tensile strength of the Pennington modified Kessler, Cruciate and the Savage repairs in an ex vivo model. A total of 60 porcine tendons were randomised to three groups, half repaired using a core suture alone and the remainder employing a core and peripheral technique. The tendons were distracted to failure. The force required to produce a 3 mm gap, the ultimate strength, the mode of failure and bulking for each repair were assessed. We found that there was a significant increase in strength without an increase in bulk as the number of strands increased. The Cruciate repair was significantly more likely to fail by suture pullout than the Pennington modified Kessler or Savage repairs. We advise the use of the Savage repair, especially in the thumb, and a Cruciate when a Savage is not possible. The Pennington modified Kessler repair should be reserved for multiple tendon injuries.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 123 - 128
1 Jan 2006
Fini M Giavaresi G Giardino R Cavani F Cadossi R

We investigated the effect of stimulation with a pulsed electromagnetic field on the osseointegration of hydroxyapatite in cortical bone in rabbits. Implants were inserted into femoral cortical bone and were stimulated for six hours per day for three weeks.

Electromagnetic stimulation improved osseointegration of hydroxyapatite compared with animals which did not receive this treatment in terms of direct contact with the bone, the maturity of the bone and mechanical fixation. The highest values of maximum push-out force (Fmax) and ultimate shear strength (σu) were observed in the treated group and differed significantly from those of the control group at three weeks (Fmax; p < 0.0001; σu, p < 0.0005).


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1066 - 1069
1 Sep 2002
Saito S Kondo S Mishima S Ishiguro N Hasegawa Y Sandell LJ Iwata H

We have measured the concentration of cartilage-derived retinoic-acid-sensitive protein (CD-RAP) in synovial fluid (SF) from the knees of 49 patients with osteoarthritis (OA) and 79 with rheumatoid arthritis (RA) in order to investigate the correlation between the type of joint disease and level of CD-RAP. The mean concentration of CD-RAP in synovial fluid was significantly higher in OA than in RA. The level of CD-RAP in the group of patients with mild OA was significantly higher than in the moderate or severe groups and that in the group with mild RA was also significantly higher than in the other RA groups and decreased with progression of the disease. Immunohistochemical studies showed expression of CD-RAP in the cytoplasm of chondrocytes in newly-formed fibrocartilage. Since CD-RAP is mainly produced in young and proliferating chondrocytes, our results suggest that the level of CD-RAP in synovial fluid reflects remodelling of articular cartilage and may be used as a marker to estimate objectively the restorative reaction of chondrocytes.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 598 - 603
1 May 2001
Nevelos JE Prudhommeaux F Hamadouche M Doyle C Ingham E Meunier A Nevelos AB Sedel L Fisher J

We compared and quantified the modes of failure and patterns of wear of 11 Mittelmeier and 11 Ceraver-Ostal retrieved alumina-alumina hip prostheses with reference to the corresponding clinical and radiological histories.

Macroscopic wear was assessed using a three-dimensional co-ordinate measuring machine. Talysurf contacting profilometry was used to measure surface roughness on a microscopic scale and SEM to determine mechanisms of wear at the submicron level.

The components were classified into one of three categories of wear: low (no visible/measurable wear), stripe (elliptical wear stripe on the heads and larger worn areas on the cups) and severe (macroscopic wear, large volumes of material lost). Overall, the volumetric wear of the alumina-alumina prostheses was substantially less than the widely used metal and ceramic-on-polyethylene combinations. By identifying and eliminating the factors which accelerate wear, it is expected that the lifetime of these devices can be further increased.


Bone & Joint 360
Vol. 12, Issue 4 | Pages 44 - 46
1 Aug 2023
Burden EG Whitehouse MR Evans JT


Bone & Joint 360
Vol. 12, Issue 6 | Pages 49 - 51
1 Dec 2023
Burden EG Whitehouse MR Evans JT


Bone & Joint 360
Vol. 13, Issue 4 | Pages 43 - 45
2 Aug 2024
Evans JT Evans JP Whitehouse MR


Bone & Joint 360
Vol. 11, Issue 6 | Pages 49 - 50
1 Dec 2022
Evans JT Whitehouse MR


Bone & Joint 360
Vol. 13, Issue 2 | Pages 47 - 49
1 Apr 2024
Burden EG Krause T Evans JP Whitehouse MR Evans JT


Bone & Joint 360
Vol. 13, Issue 3 | Pages 48 - 49
3 Jun 2024
Marson BA

The Cochrane Collaboration has produced five new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner These reviews are relevant to a wide range of musculoskeletal specialists, and include reviews in Morton’s neuroma, scoliosis, vertebral fractures, carpal tunnel syndrome, and lower limb arthroplasty.


Bone & Joint 360
Vol. 11, Issue 4 | Pages 44 - 46
1 Aug 2022
Evans JT Walton TJ Whitehouse MR


Bone & Joint 360
Vol. 12, Issue 5 | Pages 49 - 50
1 Oct 2023
Marson BA

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering pharmacological interventions for the prevention of bleeding in people undergoing definitive fixation or joint replacement for hip, pelvic, and long bone fractures; interventions for reducing red blood cell transfusion in adults undergoing hip fracture surgery: an overview of systematic reviews; and pharmacological treatments for low back pain in adults: an overview of Cochrane Reviews


Bone & Joint 360
Vol. 13, Issue 1 | Pages 44 - 45
1 Feb 2024
Marson BA

This edition of the Cochrane Corner looks at the three reviews that were published in the second half of 2023: surgical versus non-surgical interventions for displaced intra-articular calcaneal fractures; cryotherapy following total knee arthroplasty; and physical activity and education about physical activity for chronic musculoskeletal pain in children and adolescents.


Bone & Joint 360
Vol. 10, Issue 6 | Pages 48 - 50
1 Dec 2021
Evans JT French JMR Whitehouse MR


Bone & Joint 360
Vol. 10, Issue 5 | Pages 12 - 13
1 Oct 2021


Bone & Joint 360
Vol. 10, Issue 4 | Pages 49 - 51
1 Aug 2021
Evans JT Welch M Whitehouse MR


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim. Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage. Patients and Methods. Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Results. We identified 1265 differentially methylated genes, of which 145 are associated with significant changes in gene expression, such as DLX5, NCOR2 and AXIN2 (all p-values of both DNA methylation and mRNA expression < 0.05). Pathway enrichment analysis identified 26 OA-associated pathways, such as mitogen-activated protein kinase (MAPK) signalling pathway (p = 6.25 × 10-4), phosphatidylinositol (PI) signalling system (p = 4.38 × 10-3), hypoxia-inducible factor 1 (HIF-1) signalling pathway (p = 8.63 × 10-3 pantothenate and coenzyme A (CoA) biosynthesis (p = 0.017), ErbB signalling pathway (p = 0.024), inositol phosphate (IP) metabolism (p = 0.025), and calcium signalling pathway (p = 0.032). Conclusion. We identified a group of genes and biological pathwayswhich were significantly different in both DNA methylation and mRNA expression profiles between patients with OA and controls. These results may provide new clues for clarifying the mechanisms involved in the development of OA. Cite this article: A. He, Y. Ning, Y. Wen, Y. Cai, K. Xu, Y. Cai, J. Han, L. Liu, Y. Du, X. Liang, P. Li, Q. Fan, J. Hao, X. Wang, X. Guo, T. Ma, F. Zhang. Use of integrative epigenetic and mRNA expression analyses to identify significantly changed genes and functional pathways in osteoarthritic cartilage. Bone Joint Res 2018;7:343–350. DOI: 10.1302/2046-3758.75.BJR-2017-0284.R1


Bone & Joint 360
Vol. 10, Issue 2 | Pages 57 - 59
1 Apr 2021
Evans JT Whitehouse MR Evans JP


Bone & Joint 360
Vol. 10, Issue 1 | Pages 45 - 46
1 Feb 2021
Das A


Bone & Joint Research
Vol. 6, Issue 11 | Pages 631 - 639
1 Nov 2017
Blyth MJG Anthony I Rowe P Banger MS MacLean A Jones B

Objectives. This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group. Methods. A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery. Results. From the first post-operative day through to week 8 post-operatively, the median pain scores for the robotic arm-assisted group were 55.4% lower than those observed in the manual surgery group (p = 0.040). At three months post-operatively, the robotic arm-assisted group had better AKSS (robotic median 164, interquartile range (IQR) 131 to 178, manual median 143, IQR 132 to 166), although no difference was noted with the OKS. At one year post-operatively, the observed differences with the AKSS had narrowed from a median of 21 points to a median of seven points (p = 0.106) (robotic median 171, IQR 153 to 179; manual median 164, IQR 144 to 182). No difference was observed with the OKS, and almost half of each group reached the ceiling limit of the score (OKS > 43). A greater proportion of patients receiving robotic arm-assisted surgery improved their UCLA activity score. Binary logistic regression modelling for dichotomised outcome scores predicted the key factors associated with achieving excellent outcome on the AKSS: a pre-operative activity level > 5 on the UCLA activity score and use of robotic-arm surgery. For the same regression modelling, factors associated with a poor outcome were manual surgery and pre-operative depression. Conclusion. Robotic arm-assisted surgery results in improved early pain scores and early function scores in some patient-reported outcomes measures, but no difference was observed at one year post-operatively. Although improved results favoured the robotic arm-assisted group in active patients (i.e. UCLA ⩾ 5), these do not withstand adjustment for multiple comparisons. Cite this article: M. J. G. Blyth, I. Anthony, P. Rowe, M. S. Banger, A. MacLean, B. Jones. Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: Exploratory secondary analysis of a randomised controlled trial. Bone Joint Res 2017;6:631–639. DOI: 10.1302/2046-3758.611.BJR-2017-0060.R1


Objectives. Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes. Methods. Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Nfat1. -/-. AC at the initiation stage of OA, and possessed at least four NFAT1 binding sites in the promoter of each gene, were selected and tested for NFAT1 transcriptional activities by chromatin immunoprecipitation (ChIP) and promoter luciferase reporter assays using chondrocytes isolated from the AC of three- to four-month-old wild-type mice or Nfat1. -/-. mice with early OA phenotype. Results. Chromatin immunoprecipitation assays revealed that NFAT1 bound directly to the promoter of 21 of the 25 tested genes encoding cartilage-matrix proteins, growth factors, inflammatory cytokines, matrix-degrading proteinases, and specific transcription factors. Promoter luciferase reporter assays of representative anabolic and catabolic genes demonstrated that NFAT1-DNA binding functionally regulated the luciferase activity of specific target genes in wild-type chondrocytes, but not in Nfat1. -/-. chondrocytes or in wild-type chondrocytes transfected with plasmids containing mutated NFAT1 binding sequences. Conclusion. NFAT1 protects AC against degradation by directly regulating the transcription of target genes in articular chondrocytes. NFAT1 deficiency causes defective transcription of specific anabolic and catabolic genes in articular chondrocytes, leading to increased matrix catabolism and osteoarthritic cartilage degradation. Cite this article: M. Zhang, Q. Lu, T. Budden, J. Wang. NFAT1 protects articular cartilage against osteoarthritic degradation by directly regulating transcription of specific anabolic and catabolic genes. Bone Joint Res 2019;8:90–100. DOI: 10.1302/2046-3758.82.BJR-2018-0114.R1


Bone & Joint Research
Vol. 6, Issue 11 | Pages 612 - 618
1 Nov 2017
Yin C Suen W Lin S Wu X Li G Pan X

Objectives. This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in synovial fluid, and their correlations to the severity of disease regarding knee osteoarthritis (OA). Methods. Knee joint synovial fluid samples were collected from 45 patients with OA of the knee (15 mild, 15 moderate and 15 severe), ten healthy volunteers, ten patients with gouty arthritis, and ten with rheumatoid arthritis. The Kellgren–Lawrence grading (KLG) was used to assess the radiological severity of knee OA, and the patients were stratified into mild (KLG < 2), moderate (KLG = 2), and severe (KLG > 2). The expression of miR-140-3p and miR-140-5p of individual samples was measured by SYBR Green quantitative polymerase chain reaction (PCR) analysis. The expression of miR-140-3p and miR-140-5p was normalised to U6 internal control using the 2. -△△CT. method. All data were processed using SPSS software. Results. Expression of both miR-140-3p and miR-140-5p was downregulated in OA synovial fluid, showing a statistical difference between the OA and non-OA group, and increased OA severity was associated with a decreased expression of miR-140-3p or miR-140-5p. The Spearman rank correlation analysis suggested that the expression of miR-140-3p or miR-140-5p was negatively correlated with OA severity. In addition, the expression of miR-140-5p was 7.4 times higher than that of miR-140-3p across all groups. Conclusion. The dysregulation of miR-140-3p and miR-140-5p in synovial fluid and their correlations with the disease severity of OA may provide an important experimental basis for OA classification, and the miR-140-3p/miR-140-5p are of great potential as biomarkers in the diagnosis and clinical management of patients with OA. Cite this article: C-M. Yin, W-C-W. Suen, S. Lin, X-M. Wu, G. Li, X-H. Pan. Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity. Bone Joint Res 2017;6:612–618. DOI: 10.1302/2046-3758.611.BJR-2017-0090.R1


Bone & Joint Research
Vol. 6, Issue 5 | Pages 259 - 269
1 May 2017
McKirdy A Imbuldeniya AM

Objectives. To assess the clinical and cost-effectiveness of a virtual fracture clinic (VFC) model, and supplement the literature regarding this service as recommended by The National Institute for Health and Care Excellence (NICE) and the British Orthopaedic Association (BOA). Methods. This was a retrospective study including all patients (17 116) referred to fracture clinics in a London District General Hospital from May 2013 to April 2016, using hospital-level data. We used interrupted time series analysis with segmented regression, and direct before-and-after comparison, to study the impact of VFCs introduced in December 2014 on six clinical parameters and on local Clinical Commissioning Group (CCG) spend. Student’s t-tests were used for direct comparison, whilst segmented regression was employed for projection analysis. Results. There were statistically significant reductions in numbers of new patients seen face-to-face (140.4, . sd. 39.6 versus 461.6, . sd. 61.63, p < 0.0001), days to first orthopaedic review (5.2, . sd. 0.66 versus 10.9, . sd. 1.5, p < 0.0001), discharges (33.5, . sd. 3.66 versus 129.2, . sd. 7.36, p < 0.0001) and non-attendees (14.82, . sd. 1.48 versus 60.47, . sd. 2.68, p < 0.0001), in addition to a statistically significant increase in number of patients seen within 72-hours (46.4% 3873 of 8345 versus 5.1% 447 of 8771, p < 0.0001). There was a non-significant increase in consultation time of 1 minute 9 seconds (14 minutes 53 seconds . sd. 106 seconds versus 13 minutes 44 seconds . sd. 128 seconds, p = 0.0878). VFC saved the local CCG £67 385.67 in the first year and is set to save £129 885.67 annually thereafter. Conclusions. We have shown VFCs are clinically and cost-effective, with improvement across several clinical performance parameters and substantial financial savings for CCGs. To our knowledge this is the largest study addressing clinical practice implications of VFCs in England, using robust methodology to adjust for pre-existing trends. Further studies are required to appreciate whether our results are reproducible with local variations in the VFC model and payment tariffs. Cite this article: A. McKirdy, A. M. Imbuldeniya. The clinical and cost effectiveness of a virtual fracture clinic service: An interrupted time series analysis and before-and-after comparison. Bone Joint Res 2017;6:–269. DOI: 10.1302/2046-3758.65.BJR-2017-0330.R1


Bone & Joint Research
Vol. 5, Issue 7 | Pages 314 - 319
1 Jul 2016
Xiao X Hao J Wen Y Wang W Guo X Zhang F

Objectives. The molecular mechanism of rheumatoid arthritis (RA) remains elusive. We conducted a protein-protein interaction network-based integrative analysis of genome-wide association studies (GWAS) and gene expression profiles of RA. Methods. We first performed a dense search of RA-associated gene modules by integrating a large GWAS meta-analysis dataset (containing 5539 RA patients and 20 169 healthy controls), protein interaction network and gene expression profiles of RA synovium and peripheral blood mononuclear cells (PBMCs). Gene ontology (GO) enrichment analysis was conducted by DAVID. The protein association networks of gene modules were generated by STRING. Results. For RA synovium, the top-ranked gene module is HLA-A, containing TAP2, HLA-A, HLA-C, TAPBP and LILRB1 genes. For RA PBMCs, the top-ranked gene module is GRB7, consisting of HLA-DRB5, HLA-DRA, GRB7, CD63 and KIT genes. Functional enrichment analysis identified three significant GO terms for RA synovium, including antigen processing and presentation of peptide antigen via major histocompatibility complex class I (false discovery rate (FDR) = 4.86 × 10 – 4), antigen processing and presentation of peptide antigen (FDR = 2.33 × 10 – 3) and eukaryotic translation initiation factor 4F complex (FDR = 2.52 × 10 – 2). Conclusion. This study reported several RA-associated gene modules and their functional association networks. Cite this article: X. Xiao, J. Hao, Y. Wen, W. Wang, X. Guo, F. Zhang. Genome-wide association studies and gene expression profiles of rheumatoid arthritis: an analysis. Bone Joint Res 2016;5:314–319. DOI: 10.1302/2046-3758.57.2000502


Bone & Joint 360
Vol. 9, Issue 5 | Pages 49 - 50
1 Oct 2020
Das MA


Bone & Joint Research
Vol. 6, Issue 9 | Pages 542 - 549
1 Sep 2017
Arnold M Zhao S Ma S Giuliani F Hansen U Cobb JP Abel RL Boughton O

Objectives. Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. Methods. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded. Results. A total of 1094 abstracts were retrieved and 32 papers were included in the analysis, 20 of which used reference point indentation, and 12 of which used traditional depth-sensing indentation. There are several factors that must be considered when using microindentation, such as tip size, depth and method of analysis. Only two studies validated microindentation against traditional mechanical testing techniques. Both studies used reference point indentation (RPI), with one showing that RPI parameters correlate well with mechanical testing, but the other suggested that they do not. Conclusion. Microindentation has been used in various studies to assess bone stiffness, but only two studies with conflicting results compared microindentation with traditional mechanical testing techniques. Further research, including more studies comparing microindentation with other mechanical testing methods, is needed before microindentation can be used reliably to calculate cortical bone stiffness. Cite this article: M. Arnold, S. Zhao, S. Ma, F. Giuliani, U. Hansen, J. P. Cobb, R. L. Abel, O. Boughton. Microindentation – a tool for measuring cortical bone stiffness? A systematic review. Bone Joint Res 2017;6:542–549. DOI: 10.1302/2046-3758.69.BJR-2016-0317.R2


Bone & Joint Research
Vol. 6, Issue 5 | Pages 331 - 336
1 May 2017
Yamauchi R Itabashi T Wada K Tanaka T Kumagai G Ishibashi Y

Objectives. Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Methods. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data. Results. The amount of carbon and the contact angle on both implants were significantly reduced after UV irradiation. The BIC ratios for both UV light-treated implants significantly increased at two weeks, but there was no significant difference at four weeks. There was no significant difference in the BV ratios between the UV light-treated and control implants at two or four weeks. Conclusions. This study suggests that photofunctionalisation of Ti6Al4V implants, similar to that of Ti implants, may promotes osseointegration in early but not in the late phase of osseointegration. Cite this article: R. Yamauchi, T. Itabashi, K. Wada, T. Tanaka, G. Kumagai, Y. Ishibashi. Photofunctionalised Ti6Al4V implants enhance early phase osseointegration. Bone Joint Res 2017;6:331–336. DOI: 10.1302/2046-3758.65.BJR-2016-0221.R1


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives. After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Methods. Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Results. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Conclusions. Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res 2017;6:231–244. DOI: 10.1302/2046-3758.64.BJR-2017-0268.R1


Bone & Joint 360
Vol. 9, Issue 3 | Pages 44 - 45
1 Jun 2020
Das MA


Bone & Joint Research
Vol. 7, Issue 1 | Pages 6 - 11
1 Jan 2018
Wong RMY Choy MHV Li MCM Leung K K-H. Chow S Cheung W Cheng JCY

Objectives. The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. Materials and Methods. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted. Results. Fracture techniques included drill hole defects (3 of 19), bone defects (3 of 19), partial osteotomy (1 of 19), and complete osteotomies (12 of 19). Drill hole models and incomplete osteotomy models are easy to perform and allow the study of therapeutic agents but do not represent the usual clinical setting. Additionally, biomaterials can be filled into drill hole defects for analysis. Complete osteotomy models are most commonly used and are best suited for the investigation of therapeutic drugs or noninvasive interventions. The metaphyseal defect models allow the study of biomaterials, which are associated with complex and comminuted osteoporotic fractures. Conclusion. For a clinically relevant model, we propose that an animal model should satisfy the following criteria to study osteoporotic fracture healing: 1) induction of osteoporosis, 2) complete osteotomy or defect at the metaphysis unilaterally, and 3) internal fixation. Cite this article: R. M. Y. Wong, M. H. V. Choy, M. C. M. Li, K-S. Leung, S. K-H. Chow, W-H. Cheung, J. C. Y. Cheng. A systematic review of current osteoporotic metaphyseal fracture animal models. Bone Joint Res 2018;7:6–11. DOI: 10.1302/2046-3758.71.BJR-2016-0334.R2


Bone & Joint Research
Vol. 7, Issue 1 | Pages 36 - 45
1 Jan 2018
Kleinlugtenbelt YV Krol RG Bhandari M Goslings JC Poolman RW Scholtes VAB

Objectives. The patient-rated wrist evaluation (PRWE) and the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire are patient-reported outcome measures (PROMs) used for clinical and research purposes. Methodological high-quality clinimetric studies that determine the measurement properties of these PROMs when used in patients with a distal radial fracture are lacking. This study aimed to validate the PRWE and DASH in Dutch patients with a displaced distal radial fracture (DRF). Methods. The intraclass correlation coefficient (ICC) was used for test-retest reliability, between PROMs completed twice with a two-week interval at six to eight months after DRF. Internal consistency was determined using Cronbach’s α for the dimensions found in the factor analysis. The measurement error was expressed by the smallest detectable change (SDC). A semi-structured interview was conducted between eight and 12 weeks after DRF to assess the content validity. Results. A total of 119 patients (mean age 58 years (. sd. 15)), 74% female, completed PROMs at a mean time of six months (. sd. 1) post-fracture. One overall meaningful dimension was found for the PRWE and the DASH. Internal consistency was excellent for both PROMs (Cronbach’s α 0.96 (PRWE) and 0.97 (DASH)). Test-retest reliability was good for the PRWE (ICC 0.87) and excellent for the DASH (ICC 0.91). The SDC was 20 for the PRWE and 14 for the DASH. No floor or ceiling effects were found. The content validity was good for both questionnaires. Conclusion. The PRWE and DASH are valid and reliable PROMs in assessing function and disability in Dutch patients with a displaced DRF. However, due to the high SDC, the PRWE and DASH are less useful for individual patients with a distal radial fracture in clinical practice. Cite this article: Y. V. Kleinlugtenbelt, R. G. Krol, M. Bhandari, J. C. Goslings, R. W. Poolman, V. A. B. Scholtes. Are the patient-rated wrist evaluation (PRWE) and the disabilities of the arm, shoulder and hand (DASH) questionnaire used in distal radial fractures truly valid and reliable? Bone Joint Res 2018;7:36–45. DOI: 10.1302/2046-3758.71.BJR-2017-0081.R1


Bone & Joint 360
Vol. 9, Issue 2 | Pages 46 - 48
1 Apr 2020
Evans JT Whitehouse MR


Bone & Joint Research
Vol. 6, Issue 12 | Pages 640 - 648
1 Dec 2017
Xia B Li Y Zhou J Tian B Feng L

Objectives. Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis. Methods. Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma package (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify biological functions. Furthermore, the transcriptional regulatory network was established between the top 20 DEGs and transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating characteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs. Results. A total of 1320 DEGs were obtained, of which 855 were up-regulated and 465 were down-regulated. These differentially expressed genes were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, mainly associated with gene expression and osteoclast differentiation. In the transcriptional regulatory network, there were 6038 interactions pairs involving 88 transcriptional factors. In addition, the quantitative reverse transcriptase-polymerase chain reaction result validated the expression of several genes (VPS35, FCGR2A, TBCA, HIRA, TYROBP, and JUND). Finally, ROC analyses showed that VPS35, HIRA, PHF20 and NFKB2 had a significant diagnostic value for osteoporosis. Conclusion. Genes such as VPS35, FCGR2A, TBCA, HIRA, TYROBP, JUND, PHF20, NFKB2, RPL35A and BICD2 may be considered to be potential pathogenic genes of osteoporosis and may be useful for further study of the mechanisms underlying osteoporosis. Cite this article: B. Xia, Y. Li, J. Zhou, B. Tian, L. Feng. Identification of potential pathogenic genes associated with osteoporosis. Bone Joint Res 2017;6:640–648. DOI: 10.1302/2046-3758.612.BJR-2017-0102.R1


Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.


Bone & Joint Research
Vol. 6, Issue 10 | Pages 590 - 599
1 Oct 2017
Jefferson L Brealey S Handoll H Keding A Kottam L Sbizzera I Rangan A

Objectives. To explore whether orthopaedic surgeons have adopted the Proximal Fracture of the Humerus: Evaluation by Randomisation (PROFHER) trial results routinely into clinical practice. Methods. A questionnaire was piloted with six orthopaedic surgeons using a ‘think aloud’ process. The final questionnaire contained 29 items and was distributed online to surgeon members of the British Orthopaedic Association and British Elbow and Shoulder Society. Descriptive statistics summarised the sample characteristics and fracture treatment of respondents overall, and grouped them by whether they changed practice based on PROFHER trial findings. Free-text responses were analysed qualitatively for emerging themes using Framework Analysis principles. Results. There were complete responses from 265 orthopaedic and trauma surgeons who treat patients with proximal humeral fractures. Around half (137) had changed practice to various extents because of PROFHER, by operating on fewer PROFHER-eligible fractures. A third (43) of the 128 respondents who had not changed practice were already managing patients non-operatively. Those who changed practice were more likely to be younger, work in a trauma unit rather than a major trauma centre, be specialist shoulder surgeons and treat fewer PROFHER-eligible fractures surgically. This group gave higher scores when assessing validity and applicability of PROFHER. In contrast, a quarter of the non-changers were critical, sometimes emphatically, of PROFHER. The strongest theme that emerged overall was the endorsement of evidence-based practice. Conclusion. PROFHER has had an impact on surgeons’ clinical practice, both through changing it, and through underpinning existing non-operative practice. Although some respondents expressed reservations about the trial, evidence from such trials was found to be the most important influence on surgeons’ decisions to change practice. Cite this article: L. Jefferson, S. Brealey, H. Handoll, A. Keding, L. Kottam, I. Sbizzera, A. Rangan. Impact of the PROFHER trial findings on surgeons’ clinical practice: An online questionnaire survey. Bone Joint Res 2017;6:590–599. DOI: 10.1302/2046-3758.610.BJR-2017-0170


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


Bone & Joint Research
Vol. 6, Issue 10 | Pages 602 - 609
1 Oct 2017
Jin A Cobb J Hansen U Bhattacharya R Reinhard C Vo N Atwood R Li J Karunaratne A Wiles C Abel R

Objectives. Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results. BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm. 2. vs 6.55/cm. 2. vs 5.25/cm. 2. ). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion. BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing. Methods. Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically. Results. The total number of PBMNCs was decreased after QQ-culture, however, the number of CD34+ and CD206+ cells were found to have increased as assessed by flow cytometry analysis. In addition, gene expression of angiogenic factors was upregulated in QQMNCs. In the animal model, the rate of bone union was higher in the QQMNC group than in the other groups. Radiographic scores and bone volume were significantly associated with the enhancement of angiogenesis in the QQMNC group. Conclusion. We have demonstrated that QQMNCs have superior potential to accelerate fracture healing compared with PBMNCs. The QQMNCs could be a promising option for fracture nonunion. Cite this article: K. Mifuji, M. Ishikawa, N. Kamei, R. Tanaka, K. Arita, H. Mizuno, T. Asahara, N. Adachi, M. Ochi. Angiogenic conditioning of peripheral blood mononuclear cells promotes fracture healing. Bone Joint Res 2017;6: 489–498. DOI: 10.1302/2046-3758.68.BJR-2016-0338.R1


Bone & Joint 360
Vol. 9, Issue 1 | Pages 51 - 52
1 Feb 2020
Das A


Bone & Joint Research
Vol. 6, Issue 7 | Pages 439 - 445
1 Jul 2017
Sekimoto T Ishii M Emi M Kurogi S Funamoto T Yonezawa Y Tajima T Sakamoto T Hamada H Chosa E

Objectives. We have previously investigated an association between the genome copy number variation (CNV) and acetabular dysplasia (AD). Hip osteoarthritis is associated with a genetic polymorphism in the aspartic acid repeat in the N-terminal region of the asporin (ASPN) gene; therefore, the present study aimed to investigate whether the CNV of ASPN is involved in the pathogenesis of AD. Methods. Acetabular coverage of all subjects was evaluated using radiological findings (Sharp angle, centre-edge (CE) angle, acetabular roof obliquity (ARO) angle, and minimum joint space width). Genomic DNA was extracted from peripheral blood leukocytes. Agilent’s region-targeted high-density oligonucleotide tiling microarray was used to analyse 64 female AD patients and 32 female control subjects. All statistical analyses were performed using EZR software (Fisher’s exact probability test, Pearson’s correlation test, and Student’s t-test). Results. CNV analysis of the ASPN gene revealed a copy number loss in significantly more AD patients (9/64) than control subjects (0/32; p = 0.0212). This loss occurred within a 60 kb region on 9q22.31, which harbours the gene for ASPN. The mean radiological parameters of these AD patients were significantly worse than those of the other subjects (Sharp angle, p = 0.0056; CE angle, p = 0.0076; ARO angle, p = 0.0065), and all nine patients required operative therapy such as total hip arthroplasty or pelvic osteotomy. Moreover, six of these nine patients had a history of operative or conservative therapy for developmental dysplasia of the hip. Conclusions. Copy number loss within the region harbouring the ASPN gene on 9q22.31 is associated with severe AD. A copy number loss in the ASPN gene region may play a role in the aetiology of severe AD. Cite this article: T. Sekimoto, M. Ishii, M. Emi, S. Kurogi, T. Funamoto, Y. Yonezawa, T. Tajima, T. Sakamoto, H. Hamada, E. Chosa. Copy number loss in the region of the ASPN gene in patients with acetabular dysplasia: ASPN CNV in acetabular dysplasia. Bone Joint Res 2017;6:439–445. DOI: 10.1302/2046-3758.67.BJR-2016-0094.R1


Bone & Joint Research
Vol. 6, Issue 5 | Pages 315 - 322
1 May 2017
Martinez-Perez M Perez-Jorge C Lozano D Portal-Nuñez S Perez-Tanoira R Conde A Arenas MA Hernandez-Lopez JM de Damborenea JJ Gomez-Barrena E Esbrit P Esteban J

Objectives. Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the in vitro studies did not evaluate bacterial adhesion in the presence of eukaryotic cells, as stated by the ‘race for the surface’ theory. Moreover, the adherence of numerous clinical strains with different initial concentrations has not been studied. Methods. We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis. Results. Our results show that clinical strains adhere to the material surface at lower concentrations than collection strains. A destructive effect of bacteria on preosteoblastic cells was also detected, especially with higher concentrations of bacteria. Conclusions. The method described herein can be used to evaluate the effect of surface modifications on bacterial adherence more accurately than conventional monoculture studies. Clinical strains behave differently than collection strains with respect to bacterial adherence. Cite this article: M. Martinez-Perez, C. Perez-Jorge, D. Lozano, S. Portal-Nuñez, R. Perez-Tanoira, A. Conde, M. A. Arenas, J. M. Hernandez-Lopez, J. J. de Damborenea, E. Gomez-Barrena, P. Esbrit, J. Esteban. Evaluation of bacterial adherence of clinical isolates of Staphylococcus sp. using a competitive model: An in vitro approach to the “race for the surface” theory. Bone Joint Res 2017;6:315–322. DOI: 10.1302/2046-3758.65.BJR-2016-0226.R2


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives. We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results. The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p < 0.05, one-way analysis of variance). The probabilities of a surgeon obtaining a 10 mm surgical margin with a 3 mm tolerance were 90.2% in AR-assisted resections, and 70.7% in conventional resections. Conclusion. We demonstrated that the accuracy of tumour resection was satisfactory with the help of the AR navigation system, with the tumour shown as a virtual template. In addition, this concept made the navigation system simple and available without additional cost or time. Cite this article: H. S. Cho, Y. K. Park, S. Gupta, C. Yoon, I. Han, H-S. Kim, H. Choi, J. Hong. Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives. Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis. Materials and Methods. A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis. Results. Animals that underwent arthrotomy had equivalent joint contractures regardless of scaffold implantation (-13.9° versus -10.9°, equivalence limit 15°). Animals that underwent surgery to induce contracture did not demonstrate equivalent joint contractures with (41.8°) or without (53.9°) collagen scaffold implantation. Chondral damage occurred in similar rates with (11 of 48) and without (nine of 48) scaffold implantation. No significant difference in synovitis was noted between groups. Absorption of the collagen scaffold occurred within eight weeks in all animals. Conclusion. Our data suggest that intra-articular implantation of a collagen sponge does not induce synovitis or cartilage damage. Implantation in a native joint does not seem to induce contracture. Implantation of the collagen sponge in a rabbit knee model of contracture may decrease the severity of the contracture. Cite this article: J. A. Walker, T. J. Ewald, E. Lewallen, A. Van Wijnen, A. D. Hanssen, B. F. Morrey, M. E. Morrey, M. P. Abdel, J. Sanchez-Sotelo. Intra-articular implantation of collagen scaffold carriers is safe in both native and arthrofibrotic rabbit knee joints. Bone Joint Res 2016;6:162–171. DOI: 10.1302/2046-3758.63.BJR-2016-0193


Bone & Joint Research
Vol. 6, Issue 3 | Pages 154 - 161
1 Mar 2017
Liu J Li X Zhang H Gu R Wang Z Gao Z Xing L

Objectives. Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. Methods. We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay. Results. The expression levels of WW Domain Containing E3 Ubiquitin Protein Ligase 1 (Wwp1), SMAD Specific E3 Ubiquitin Protein Ligase 1 (Smurf1), SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and Itch were all significantly increased in the fracture callus of WT mice, which was associated with elevated expression of NF-κB members and total ubiquitinated proteins. Callus tissue isolated from Itch KO mice expressed higher levels of osteoblast-associated genes, including Runx2, a positive regulator of osteoblast differentiation, but osteoclast-associated genes were not increased. Both NF-κB RelA and RelB proteins were found to bind to the NF-κB binding site in the mouse Itch promoter. Conclusions. Our findings indicate that Itch depletion may have a strong positive effect on osteoblast differentiation in fracture callus. Thus, ubiquitin E3 ligase Itch could be a potential target for enhancing bone fracture healing. Cite this article: J. Liu, X. Li, H. Zhang, R. Gu, Z. Wang, Z. Gao, L. Xing. Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res 2017;6:154–161. DOI: 10.1302/2046-3758.63.BJR-2016-0237.R1


Bone & Joint Research
Vol. 6, Issue 2 | Pages 73 - 81
1 Feb 2017
Ishihara K Okazaki K Akiyama T Akasaki Y Nakashima Y

Objectives. Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts. Methods. Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays. Results. After six weeks, the area of mineralisation was significantly higher for the transplanted osteophytes than for the cancellous bone (43803 μm. 2. , . sd. 14660 versus 9421 μm. 2. , . sd. 5032, p = 0.0184, one-way analysis of variance). Compared with cancellous bone, the conditioned medium prepared using osteophytes contained a significantly higher amounts of transforming growth factor (TGF)-β1 (471 pg/ml versus 333 pg/ml, p = 0.0001, Wilcoxon rank sum test), bone morphogenetic protein (BMP)-2 (47.75 pg/ml versus 32 pg/ml, p = 0.0214, Wilcoxon rank sum test) and insulin-like growth factor (IGF)-1 (314.5 pg/ml versus 191 pg/ml, p = 0.0418, Wilcoxon rank sum test). The stronger effects of osteophytes towards osteoblasts in terms of a higher proliferation rate, upregulation of gene expression of differentiation markers such as alpha-1 type-1 collagen and alkaline phosphate, and higher migration, compared with cancellous bone, was confirmed. Conclusion. We provide evidence of favourable features of osteophytes for bone mineralisation through a direct effect on osteoblasts. The acceleration in metabolic activity of the osteophyte provides justification for future studies evaluating the clinical use of osteophytes as autologous bone grafts. Cite this article: K. Ishihara, K. Okazaki, T. Akiyama, Y. Akasaki, Y. Nakashima. Characterisation of osteophytes as an autologous bone graft source: An experimental study in vivo and in vitro. Bone Joint Res 2017;6:73–81. DOI: 10.1302/2046-3758.62.BJR-2016-0199.R1


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives. The cytotoxicity induced by cobalt ions (Co. 2+. ) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co. 2+. and Co-NPs on liver cells, and explain further the potential mechanisms. Methods. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co. 2+. or Co-NPs treatment. Results. Results showed cytotoxic effects of Co. 2+. and Co-NPs were dependent upon time and dosage, and the cytotoxicity of Co-NPs was greater than that of Co. 2+. In addition, Co-NPs elicited a significant (p < 0.05) reduction in cell viability with a concomitant increase in lactic dehydrogenase release, reactive oxygen species generation, IL-8 mRNA expression, Bax/Bcl-2 mRNA expression and DNA damage after 24 hours of exposure. Conclusion. Co-NPs induced greater cytotoxicity and genotoxicity in BRL-3A cells than Co. 2+. Cell membrane damage, oxidative stress, immune inflammation and DNA damage may play an important role in the effects of Co-NPs on liver cells. Cite this article: Y. K. Liu, X. X. Deng, H.L. Yang. Cytotoxicity and genotoxicity in liver cells induced by cobalt nanoparticles and ions. Bone Joint Res 2016;5:461–469. DOI: 10.1302/2046-3758.510.BJR-2016-0016.R1


Bone & Joint Research
Vol. 5, Issue 6 | Pages 276 - 279
1 Jun 2016
Zhu H Gao Y Wang Y Zhang C

Objectives. Circulating exosomes represent novel biomarkers for multiple diseases. In this study, we investigated whether circulating exosome levels could be used as a diagnostic biomarker for steroid-induced osteonecrosis of the femoral head (ONFH). Methods. We assessed the serum exosome level of 85 patients with steroid-induced ONFH and 115 healthy donors by Nanosight detection. We then assessed the diagnostic accuracy of serum exosomes by receiver operating characteristic curve analysis. Results. The circulating exosome level of the ONFH group was significantly lower than that of control group. The area under the curve was 0.72, suggesting that the level of serum exosomes has moderate diagnostic accuracy for steroid-induced ONFH. Conclusion. Circulating exosome levels are valuable in the diagnosis of steroid-induced ONFH. Cite this article: H-Y. Zhu, Y-C. Gao, Y. Wang, C-Q. Zhang. Circulating exosome levels in the diagnosis of steroid-induced osteonecrosis of the femoral head. Bone Joint Res 2016;5:276–279. DOI: 10.1302/2046-3758.56.BJR-2015-0014.R1


Bone & Joint 360
Vol. 8, Issue 4 | Pages 46 - 47
1 Aug 2019
Das A


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives. Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Methods. Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis. Results. The serum level of patients (IL-18) increased significantly with the grade of IVD degeneration. There was a dramatic alteration in IL-18 level between the advanced degeneration (Grade III to V) group and the normal group (p = 0.008) Furthermore, IL-18 induced upregulation of the catabolic regulator MMP13 and downregulation of the anabolic regulators aggrecan, type II collagen, and SOX6 at 24 hours, contributing to degradation of disc matrix enzymes. However, BMP-2 antagonised the IL-18 induced upregulation of aggrecan, type II collagen, and SOX6, resulting in reversal of IL-18 mediated disc degeneration. Conclusions. BMP-2 is anti-catabolic in human NP and AF cells, and its effects are partially mediated through provocation of the catabolic effect of IL-18. These findings indicate that BMP-2 may be a unique therapeutic option for prevention and reversal of disc degeneration. Cite this article: S. Ye, B. Ju, H. Wang, K-B. Lee. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration. Bone Joint Res 2016;5:412–418. DOI: 10.1302/2046-3758.59.BJR-2016-0032.R1


Bone & Joint Research
Vol. 5, Issue 10 | Pages 492 - 499
1 Oct 2016
Li X Li M Lu J Hu Y Cui L Zhang D Yang Y

Objectives. To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention. Materials and Methods. The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the t-test, and significance was set at p < 0.05. Results. There was no significant difference between the amount of tooth movement in the young group (0.96, standard deviation (. sd. ) 0.30mm) and that in the adult group (0.80mm, . sd. 0.28) (p > 0.05) after the seven-day force application. On the compression side, the expression of RANKL and TRAP-positive osteoclasts in both the young and the adult groups increased after the application of force for seven days, and then decreased at the end of the seven-day retention period. However, by the end of the period, the expression of RANKL on the compression side dropped to the control level in the young group (p > 0.05), while it was still higher than that on the control side in the adult group (p < 0.05). The expression of RANKL on the compression side did not show significant difference between the young and the adult groups after seven-day force application (p > 0.05), but it was significantly higher in the adult group than that in the young group after seven-day post-orthodontic retention (p < 0.05). Similarly, the decreasing trend of TRAP-positive osteoclasts during the retention period in the adult group was less obvious than that in the young group. Conclusions. The bone-resorptive activity in the young rats was more dynamic than that in the adult rats. The expression of RANKL and the number of osteoclasts in adult rats did not drop to the control level during the post-orthodontic retention period while RANKL expression and the number of osteoclasts in young rats had returned to the baseline. Cite this article: X. Li, M. Li, J. Lu, Y. Hu, L. Cui, D. Zhang, Y. Yang. Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone Joint Res 2016;5:492–499. DOI: 10.1302/2046-3758.510.BJR-2016-0004.R2


Objectives

Platelet-rich fibrin matrix (PRFM) has been proved to enhance tenocyte proliferation but has mixed results when used during rotator cuff repair. The optimal PRFM preparation protocol should be determined before clinical application. To screen the best PRFM to each individual’s tenocytes effectively, small-diameter culture wells should be used to increase variables. The gelling effect of PRFM will occur when small-diameter culture wells are used. A co-culture device should be designed to avoid this effect.

Methods

Tenocytes harvested during rotator cuff repair and blood from a healthy volunteer were used. Tenocytes were seeded in 96-, 24-, 12-, and six-well plates and co-culture devices. Appropriate volumes of PRFM, according to the surface area of each culture well, were treated with tenocytes for seven days. The co-culture device was designed to avoid the gelling effect that occurred in the small-diameter culture well. Cell proliferation was analyzed by water soluble tetrazolium-1 (WST-1) bioassay.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 33 - 36
1 Feb 2016
Jenkins PJ Morton A Anderson G Van Der Meer RB Rymaszewski LA

Objectives. “Virtual fracture clinics” have been reported as a safe and effective alternative to the traditional fracture clinic. Robust protocols are used to identify cases that do not require further review, with the remainder triaged to the most appropriate subspecialist at the optimum time for review. The objective of this study was to perform a “top-down” analysis of the cost effectiveness of this virtual fracture clinic pathway. Methods. National Health Service financial returns relating to our institution were examined for the time period 2009 to 2014 which spanned the service redesign. Results. The total staffing costs rose by 4% over the time period (from £1 744 933 to £1 811 301) compared with a national increase of 16%. The total outpatient department rate of attendance fell by 15% compared with a national fall of 5%. Had our local costs increased in line with the national average, an excess expenditure of £212 705 would have been required for staffing costs. Conclusions. The virtual fracture clinic system was associated with less overall use of staff resources in comparison to national cost data. Adoption of this system nationally may have the potential to achieve significant cost savings. Cite this article: P. J. Jenkins. Fracture clinic redesign reduces the cost of outpatient orthopaedic trauma care. Bone Joint Res 2016;5:33–36. doi: 10.1302/2046-3758.52.2000506


Bone & Joint Research
Vol. 5, Issue 2 | Pages 61 - 65
1 Feb 2016
Scott EEF Hamilton DF Wallace RJ Muir AY Simpson AHRW

Objectives. Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods. Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results. The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion. Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. doi: 10.1302/2046-3758.52.2000484


Bone & Joint Research
Vol. 5, Issue 2 | Pages 26 - 32
1 Feb 2016
Wendling A Mar D Wischmeier N Anderson D McIff T

Objectives. The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Methods. Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. A-priorit-tests and univariate ANOVAs were used to compare elution and mechanical test results between the two mix groups and the control group. Results. The delayed technique showed a significant increase in elution on day one compared with the standard mix technique (p < 0.001). The transition point from Phase I to Phase II occurred on day ten. LFUS treatments significantly increased elution amounts for all groups above control. Delayed technique resulted in significantly higher elution amounts for the five-minute- (p = 0.004) and 45-minute- (p < 0.001) duration groups compared with standard technique. Additionally, the correlations between LFUS duration and total elution amount for both mix techniques were significant (p = 0.03). Both antibiotic-impregnated groups exhibited a significant decrease in offset yield stress compared with the control group (p < 0.001), however, their lower 95% confidence intervals were all above the 70 MPa limit defined by International Standards Organization (ISO) 5833-2 reference standard for acrylic bone cement. Conclusion. The combination of a delayed mix technique with LFUS treatments provides a reasonable means for increasing both short- and long-term antibiotic elution without affecting mechanical strength. Cite this article: Dr. T. McIff. Combination of modified mixing technique and low frequency ultrasound to control the elution profile of vancomycin-loaded acrylic bone cement. Bone Joint Res 2016;5:26–32. doi: 10.1302/2046-3758.52.2000412


Bone & Joint Research
Vol. 8, Issue 2 | Pages 41 - 48
1 Feb 2019
Busse P Vater C Stiehler M Nowotny J Kasten P Bretschneider H Goodman SB Gelinsky M Zwingenberger S

Objectives

Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro.

Methods

Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed.


Bone & Joint Research
Vol. 8, Issue 1 | Pages 32 - 40
1 Jan 2019
Berger DR Centeno CJ Steinmetz NJ

Objectives

Platelet-rich plasma (PRP) is being used increasingly often in the clinical setting to treat tendon-related pathologies. Yet the optimal PRP preparations to promote tendon healing in different patient populations are poorly defined. Here, we sought to determine whether increasing the concentration of platelet-derived proteins within a derivative of PRP, platelet lysate (PL), enhances tenocyte proliferation and migration in vitro, and whether the mitogenic properties of PL change with donor age.

Methods

Concentrated PLs from both young (< 50 years) and aged (> 50 years) donors were prepared by exposing pooled PRP to a series of freeze-thaw cycles followed by dilution in plasma, and the levels of several platelet-derived proteins were measured using multiplex immunoassay technology. Human tenocytes were cultured with PLs to simulate a clinically relevant PRP treatment range, and cell growth and migration were assessed using DNA quantitation and gap closure assays, respectively.


Bone & Joint Research
Vol. 7, Issue 11 | Pages 587 - 594
1 Nov 2018
Zhang R Li G Zeng C Lin C Huang L Huang G Zhao C Feng S Fang H

Objectives

The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known.

Methods

In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1182 - 1188
1 Nov 2000
Barker DS Wang AW Yeo MF Nawana NS Brumby SA Pearcy MJ Howie DW

We studied the effect of the surface finish of the stem on the transfer of load in the proximal femur in a sheep model of cemented hip arthroplasty. Strain-gauge analysis and corresponding finite-element (FE) analysis were performed to assess the effect of friction and creep at the cement-stem interface. No difference was seen between the matt and polished stems. FE analysis showed that the effects of cement creep and friction at the stem-cement interface on femoral strain were small compared with the effect of inserting a cemented stem


Bone & Joint Research
Vol. 7, Issue 7 | Pages 494 - 500
1 Jul 2018
Jiang L Zhu X Rong J Xing B Wang S Liu A Chu M Huang G

Objectives

Given the function of adiponectin (ADIPOQ) on the inflammatory condition of obesity and osteoarthritis (OA), we hypothesized that the ADIPOQ gene might be a candidate gene for a marker of susceptibility to OA.

Methods

We systematically screened three tagging polymorphisms (rs182052, rs2082940 and rs6773957) in the ADIPOQ gene, and evaluated the association between the genetic variants and OA risk in a case-controlled study that included 196 OA patients and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform.


Bone & Joint Research
Vol. 7, Issue 8 | Pages 511 - 516
1 Aug 2018
Beverly M Mellon S Kennedy JA Murray DW

Objectives

We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection.

Materials and Methods

Needles were placed in the femoral condyle and proximal tibia of five anaesthetized rabbits and connected to pressure recorders. The limb was loaded with and without proximal vascular occlusion. An additional subject had simultaneous triple recordings at the femoral head, femoral condyle and proximal tibia. In a further subject, saline injections at three sites were carried out in turn.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1386 - 1391
1 Oct 2008
Ozbaydar M Elhassan B Esenyel C Atalar A Bozdag E Sunbuloglu E Kopuz N Demirhan M

We compared time-dependent changes in the biomechanical properties of single-and double-row repair of a simulated acute tear of the rotator cuff in rabbits to determine the effect of the fixation techniques on the healing process. A tear of the supraspinatus tendon was created in 80 rabbits which were separated into two equal groups. A single-row repair with two suture anchors was conducted in group 1 and a double-row repair with four suture anchors in group 2. A total of ten intact contralateral shoulder joints was used as a control group. Biomechanical testing was performed immediately post-operatively and at four and eight weeks, and histological analysis at four and eight weeks. The mean load to failure in group 2 animals was greater than in group 1, but both groups remained lower than the control group at all intervals. Histological analysis showed similar healing properties at four and eight weeks in both groups, but a significantly larger number of healed tendon-bone interfaces were identified in group 2 than in group 1 at eight weeks (p < 0.012). The ultimate load to failure increased with the number of suture anchors used immediately post-operatively, and at four and eight weeks. The increased load to failure at eight weeks seemed to be related to the increase in the surface area of healed tendon-to-bone in the double-row repair group


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives

The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy.

Methods

Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1261 - 1267
1 Sep 2007
Tohyama H Yasuda K Uchida H Nishihira J

In order to clarify the role of cytokines in the remodelling of the grafted tendon for ligament reconstruction we compared the responses to interleukin (IL)-1β, platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-β1 of extrinsic fibroblasts infiltrating the frozen-thawed patellar tendon in rats with that of the normal tendon fibroblasts, in regard to the gene expression of matrix metalloproteinase (MMP)-13, using Northern blot analysis. We also examined, immunohistologically, the local expression of IL-1β, PDGF-BB, and TGF-β1 in fibroblasts infiltrating the frozen-thawed patellar tendon. Northern blot analysis showed that fibroblasts derived from the patellar tendon six weeks after the freeze-thaw procedure in situ showed less response to IL-1β than normal tendon fibroblasts with respect to MMP-13 mRNA gene expression. The immunohistological findings revealed that IL-1β was over-expressed in extrinsic fibroblasts which infiltrated the patellar tendon two and six weeks after the freeze-thaw procedure in situ, but neither PDGF-BB nor TGF-β1 was over-expressed in these extrinsic fibroblasts. Our findings indicated that IL-1β had a close relationship to matrix remodelling of the grafted tendon for ligament reconstruction, in addition to the commencement of inflammation during the tissue-healing process


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives

The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.

Methods

Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 958 - 965
1 Jul 2008
Leong JJH Leff DR Das A Aggarwal R Reilly P Atkinson HDE Emery RJ Darzi AW

The aim of this study was to validate the use of three models of fracture fixation in the assessment of technical skills. We recruited 21 subjects (six experts, seven intermediates, and eight novices) to perform three procedures: application of a dynamic compression plate on a cadaver porcine model, insertion of an unreamed tibial intramedullary nail, and application of a forearm external fixator, both on synthetic bone models. The primary outcome measures were the Objective Structural Assessment of technical skills global rating scale on video recordings of the procedures which were scored by two independent expert observers, and the hand movements of the surgeons which were analysed using the Imperial College Surgical Assessment Device. The video scores were significantly different for the three groups in all three procedures (p < 0.05), with excellent inter-rater reliability (α = 0.88). The novice and intermediate groups specifically were significantly different in their performance with dynamic compression plate and intramedullary nails (p < 0.05). Movement analysis distinguished between the three groups in the dynamic compression plate model, but a ceiling effect was demonstrated in the intramedullary nail and external fixator procedures, where intermediates and experts performed to comparable standards (p > 0.6). A total of 85% (18 of 21) of the subjects found the dynamic compression model and 57% (12 of 21) found all the models acceptable tools of assessment. This study has validated a low-cost, high-fidelity porcine dynamic compression plate model using video rating scores for skills assessment and movement analysis. It has also demonstrated that Synbone models for the application of and intramedullary nail and an external fixator are less sensitive and should be improved for further assessment of surgical skills in trauma. The availability of valid objective tools of assessment of surgical skills allows further studies into improving methods of training


Bone & Joint 360
Vol. 7, Issue 3 | Pages 38 - 39
1 Jun 2018
Das A


Objectives

Degenerative disc disease (DDD) and osteoarthritis (OA) are relatively frequent causes of disability amongst the elderly; they constitute serious socioeconomic costs and significantly impair quality of life. Previous studies to date have found that aggrecan variable number of tandem repeats (VNTR) contributes both to DDD and OA. However, current data are not consistent across studies. The purpose of this study was to evaluate systematically the relationship between aggrecan VNTR, and DDD and/or OA.

Methods

This study used a highly sensitive search strategy to identify all published studies related to the relationship between aggrecan VNTR and both DDD and OA in multiple databases from January 1996 to December 2016. All identified studies were systematically evaluated using specific inclusion and exclusion criteria. Cochrane methodology was also applied to the results of this study.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 274 - 281
1 Apr 2018
Collins KH Hart DA Seerattan RA Reimer RA Herzog W

Objectives

Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes.

Methods

A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage.


Bone & Joint 360
Vol. 7, Issue 2 | Pages 40 - 42
1 Apr 2018
Foy MA


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives

This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model.

Methods

Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR).


Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives

In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models.

Methods

OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 157 - 165
1 Feb 2018
Sun Y Kiraly AJ Sun AR Cox M Mauerhan DR Hanley EN

Objectives

The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01).

Methods

Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives

Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues.

Methods

A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives

The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI).

Methods

The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 276 - 282
1 Mar 2000
Sabo D Brocai DRC Eble M Wannenmacher M Ewerbeck V

We studied the effects of irradiation on the reintegration of autologous osteoarticular grafts over a period of 24 weeks in a canine model. In 16 foxhounds the medial femoral condyle was resected, irradiated and immediately replanted. In the control group resection and replantation were performed without irradiation. Reintegration was assessed by macroscopic analysis, histology, radiography and gait analysis. Reintegration was equal at 12 weeks, but significantly inferior in the irradiated group after 24 weeks with delayed bone remodelling. The articular cartilage showed modest degeneration. Conventional radiography and histology showed corresponding changes. Limb function was adequate but the gait was inferior in the treated group


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives

Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear.

Methods

To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 22 - 25
1 Jan 1996
Campbell DG Li P Oakeshott RD

Infection of human cartilage with HIV in vivo has not previously been reported. Specimens of articular cartilage taken at postmortem from ten patients who were HIV-positive were examined. Two had AIDS and eight were believed to have stage-2 disease. The standard polymerase chain reaction (PCR) protocol was modified to allow semiquantitative analysis of the samples. Oligonucleotide primers labelled with . 32. P gamma-ATP were used to detect a segment of HIV DNA and a control DNA gene segment (HLA genome) to estimate the ratio of infected cells. The . 32. P-labelled PCR products were separated on acrylamide gels and visualised directly by autoradiography and computer densitometry. Infection of human cartilage in vivo was demonstrated in nine of the ten samples in which the PCR analysis was positive. The other did not react sufficiently to produce detectable radiolabelled PCR product despite repeated DNA digestion and extraction. Cartilage infected with HIV could be a potential source of HIV when used in operations


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1182 - 1190
1 Nov 2001
Minovic A Milosev I Pisot V Cör A Antolic V

We analysed revised Mathys isoelastic polyacetal femoral stems with stainless-steel heads and polyethylene acetabular cups from eight patients in order to differentiate various types of particle of wear debris. Loosening of isoelastic femoral stems is associated with the formation of polyacetal wear particles as well as those of polyethylene and metal. All three types of particle were isolated simultaneously by tissue digestion followed by sucrose gradient centrifugation. Polyacetal particles were either elongated, ranging from 10 to 150 μm in size, or shred-like and up to 100 μm in size. Polyethylene particles were elongated or granules, and were typically submicron or micronsized. Polyacetal and polyethylene polymer particles were differentiated by the presence of BaSO. 4. , which is added as a radiopaque agent to polyacetal but not to polyethylene. This was easily detectable by back-scattered SEM analysis and verified by energy dispersive x-ray analysis. Two types of foreign-body giant cell (FBGC) were recognised in the histological specimens. Extremely large FBGCs with irregular polygonal particles showing an uneven, spotty birefringence in polarised light were ascribed to polyacetal debris. Smaller FBGCs with slender elongated particles shining uniformly brightly in polarisation were related to polyethylene. Mononucleated histiocytes containing both types of particle were also present. Our findings offer a better understanding of the processes involved in the loosening of polyacetal stems and indicate why the idea of ‘isoelasticity’ proved to be unsuccessful in clinical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 900 - 905
1 Aug 2003
Shardlow DL Stone MH Ingham E Fisher J

Proponents of the biological theory of aseptic loosening have in recent years tended to concentrate on the production and distribution of particulate ultra-high-molecular-weight polyethylene (UHMWPE) debris around the potential joint space. However, mechanical loading of cemented implants with the differing elastic moduli of metal stems, polymethylmethacrylate (PMMA) cement and bone can result in relative micromotion, implying the potential for production of metal and PMMA particles from the stem-cement interface by fretting wear. In order to investigate the production and biological reactivity of debris from this interface, PMMA and metal particulate debris was produced by sliding wear of PMMA pins containing barium sulphate and zirconium dioxide against a Vaquasheened stainless steel counterface. This debris was characterised by SEM, energy-dispersive analysis by X-ray (EDAX) and image analysis, then added to cell cultures of a human monocytic cell line, U937, and stimulation of pro-osteolytic cytokines measured by ELISA. Large quantities of PMMA cement debris were generated by the sliding wear of PMMA pins against Vaquasheened stainless steel plates in the method developed for this study. Both cements stimulated the release of pro-osteolytic TNFα from the U937 monocytic cell line, in a dose-dependent fashion. There was a trend towards greater TNFα release with Palacos cement than CMW cement at the same dose. Palacos particles also caused significant release of IL-6, another pro-osteolytic cytokine, while CMW did not. The particulate cement debris produced did not stimulate the release of GM-CSF or IL1β from the U937 cells. These results may explain the cytokine pathway responsible for bone resorption caused by particulate PMMA debris. Radio-opaque additives are of value in surgical practice and clinical studies to quantify the relevance of these in vitro findings are required before the use of cement containing radio-opacifier is constrained


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis. In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone. We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 135 - 142
1 Jan 2004
Cinotti G Patti AM Vulcano A Rocca CD Polveroni G Giannicola G Postacchini F

Aternatives to autogenous bone graft for spinal fusion have been investigated for many years. It has been shown that osteoconductive materials alone do not give a rate of fusion which is comparable to that of autogenous bone graft. We analysed the effectiveness of porous ceramic loaded with cultured mesenchymal stem cells as a new graft material for spinal fusion in an animal model. Posterolateral fusion was carried out at the L4/L5 level in 40 White New Zealand rabbits using one of the following graft materials: porous ceramic granules plus cultured mesenchymal stem cells (group I); ceramic granules plus fresh autogenous bone marrow (group II); ceramic granules alone (group III); and autogenous bone graft (group IV). The animals were killed eight weeks after surgery and the spines were evaluated radiographically, by a manual palpation test and by histological analysis. The rate of fusion was significantly higher in group I compared with group III and higher, but not significantly, in group I compared with groups II and IV. In group I histological analysis showed newly formed bone in contact with the implanted granules and highly cellular bone marrow between the newly formed trabecular bone. In group II, thin trabeculae of newly formed bone were present in the peripheral portion of the fusion mass. In group III, there was a reduced mount of newly formed bone and abundant fibrous tissue. In group IV, there were thin trabeculae of newly formed bone close to the decorticated transverse processes and dead trabecular bone in the central portion of the fusion mass. In vitro cultured mesenchymal stem cells may be loaded into porous ceramic to make a graft material for spinal fusion which appears to be more effective than porous ceramic alone. Further studies are needed to investigate the medium- to long-term results of this procedure, its feasibility in the clinical setting and the most appropriate carrier for mesenchymal stem cells


Objectives

Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA.

Methods

We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1710 - 1716
1 Dec 2010
Chia W Pan R Tseng F Chen Y Feng C Lee H Chang D Sytwu H

The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of matrix metalloproteinases (MMPs). Osteoarthritis was induced by using this microsurgical technique under direct vision without involving the cavity of the knee. Degeneration of cartilage was assessed by the Mankin score and synovial tissue was used to determine the mRNA expression levels of MMPs. Irrigation fluid from the knee was used to measure the concentrations of MMP-3 and MMP-9. Analysis of cartilage degeneration was correlated with the levels of expression of MMP. After operation the patellofemoral joint showed evidence of mild osteoarthritis at eight weeks and further degenerative changes by 12 weeks. The level of synovial MMP-9 mRNA correlated with the Mankin score at eight weeks, but not at 12 weeks. The levels of MMP-2, MMP-3 and MMP-14 mRNA correlated with the Mankin score at 12 weeks. An increase in MMP-3 was observed from four weeks up to 16 weeks. MMP-9 was notably increased at eight weeks, but the concentration at 16 weeks had decreased to the level observed at four weeks. Our observations suggest that MMP-2, MMP-3 and MMP-14 could be used as markers of the progression of osteoarthritic change


Bone & Joint Research
Vol. 6, Issue 9 | Pages 566 - 571
1 Sep 2017
Cheng T Zhang X Hu J Li B Wang Q

Objectives

Surgeons face a substantial risk of infection because of the occupational exposure to blood-borne pathogens (BBPs) from patients undergoing high-risk orthopaedic procedures. This study aimed to determine the seroprevalence of four BBPs among patients undergoing joint arthroplasty in Shanghai, China. In addition, we evaluated the significance of pre-operative screening by calculating a cost-to-benefit ratio.

Methods

A retrospective observational study of pre-operative screening for BBPs, including hepatitis B and C viruses (HBV and HCV), human immunodeficiency virus (HIV) and Treponema pallidum (TP), was conducted for sequential patients in the orthopaedic department of a large urban teaching hospital between 01 January 2009 and 30 May 2016. Medical records were analysed to verify the seroprevalence of these BBPs among the patients stratified by age, gender, local origin, type of surgery, history of previous transfusion and marital status.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives

Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain.

Methods

A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system.