Advertisement for orthosearch.org.uk
Results 1 - 20 of 3361
Results per page:
Bone & Joint Open
Vol. 4, Issue 11 | Pages 825 - 831
1 Nov 2023
Joseph PJS Khattak M Masudi ST Minta L Perry DC

Aims. Hip disease is common in children with cerebral palsy (CP) and can decrease quality of life and function. Surveillance programmes exist to improve outcomes by treating hip disease at an early stage using radiological surveillance. However, studies and surveillance programmes report different radiological outcomes, making it difficult to compare. We aimed to identify the most important radiological measurements and develop a core measurement set (CMS) for clinical practice, research, and surveillance programmes. Methods. A systematic review identified a list of measurements previously used in studies reporting radiological hip outcomes in children with CP. These measurements informed a two-round Delphi study, conducted among orthopaedic surgeons and specialist physiotherapists. Participants rated each measurement on a nine-point Likert scale (‘not important’ to ‘critically important’). A consensus meeting was held to finalize the CMS. Results. Overall, 14 distinct measurements were identified in the systematic review, with Reimer’s migration percentage being the most frequently reported. These measurements were presented over the two rounds of the Delphi process, along with two additional measurements that were suggested by participants. Ultimately, two measurements, Reimer’s migration percentage and femoral head-shaft angle, were included in the CMS. Conclusion. This use of a minimum standardized set of measurements has the potential to encourage uniformity across hip surveillance programmes, and may streamline the development of tools, such as artificial intelligence systems to automate the analysis in surveillance programmes. This core set should be the minimum requirement in clinical studies, allowing clinicians to add to this as needed, which will facilitate comparisons to be drawn between studies and future meta-analyses. Cite this article: Bone Jt Open 2023;4(11):825–831


Bone & Joint Research
Vol. 12, Issue 10 | Pages 624 - 635
4 Oct 2023
Harrison CJ Plessen CY Liegl G Rodrigues JN Sabah SA Beard DJ Fischer F

Aims. To map the Oxford Knee Score (OKS) and High Activity Arthroplasty Score (HAAS) items to a common scale, and to investigate the psychometric properties of this new scale for the measurement of knee health. Methods. Patient-reported outcome measure (PROM) data measuring knee health were obtained from the NHS PROMs dataset and Total or Partial Knee Arthroplasty Trial (TOPKAT). Assumptions for common scale modelling were tested. A graded response model (fitted to OKS item responses in the NHS PROMs dataset) was used as an anchor to calibrate paired HAAS items from the TOPKAT dataset. Information curves for the combined OKS-HAAS model were plotted. Bland-Altman analysis was used to compare common scale scores derived from OKS and HAAS items. A conversion table was developed to map between HAAS, OKS, and the common scale. Results. We included 3,329 response sets from 528 patients undergoing knee arthroplasty. These generally met the assumptions of unidimensionality, monotonicity, local independence, and measurement invariance. The HAAS items provided more information than OKS items at high levels of knee health. Combining both instruments resulted in higher test-level information than either instrument alone. The mean error between common scale scores derived from the OKS and HAAS was 0.29 logits. Conclusion. The common scale allowed more precise measurement of knee health than use of either the OKS or HAAS individually. These techniques for mapping PROM instruments may be useful for the standardization of outcome reporting, and pooling results across studies that use either PROM in individual-patient meta-analysis. Cite this article: Bone Joint Res 2023;12(10):624–635


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora. Results. Comparing the different measurement methods for femoral version resulted in a maximum mean difference of 18° (95% CI 16 to 20) between the most proximal (Lee et al) and most distal (Murphy et al) methods. Higher differences in proximal and distal femoral version measurement techniques were seen in femora with greater femoral version (r > 0.46; p < 0.001) and greater NSA (r > 0.37; p = 0.008) between all measurement methods. In the parametric 3D manipulation analysis, differences in femoral version increased 11° and 9° in patients with high and normal femoral version, respectively, with increasing NSA (110° to 150°). Conclusion. Measurement of femoral version angles differ depending on the method used to almost 20°, which is in the range of the aimed surgical correction in derotational femoral osteotomy and thus can be considered clinically relevant. Differences between proximal and distal measurement methods further increase by increasing femoral version and NSA. Measurement methods that take the entire proximal femur into account by using distal landmarks may produce more sensitive measurements of these differences. Cite this article: Bone Jt Open 2022;3(10):759–766


Bone & Joint Open
Vol. 3, Issue 11 | Pages 877 - 884
14 Nov 2022
Archer H Reine S Alshaikhsalama A Wells J Kohli A Vazquez L Hummer A DiFranco MD Ljuhar R Xi Y Chhabra A

Aims. Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment. Methods. A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained. Results. Among 256 hips with AI outputs, all six hip AI measurements were successfully obtained. The AI-reader correlations were generally good (ICC 0.60 to 0.74) to excellent (ICC > 0.75). There was lower agreement for CCD angle measurement. Most widely used measurements for HD diagnosis (LCEA and Tönnis angle) demonstrated good to excellent inter-method reliability (ICC 0.71 to 0.86 and 0.82 to 0.90, respectively). The median reading time for the three readers and AI was 212 (IQR 197 to 230), 131 (IQR 126 to 147), 734 (IQR 690 to 786), and 41 (IQR 38 to 44) seconds, respectively. Conclusion. This study showed that AI-based software demonstrated reliable radiological assessment of patients with HD with significant interpretation-related time savings. Cite this article: Bone Jt Open 2022;3(11):877–884


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 12 - 18
1 Jan 2022
Weil S Arnander M Pearse Y Tennent D

Aims. The amount of glenoid bone loss is an important factor in deciding between soft-tissue and bony reconstruction when managing anterior shoulder instability. Accurate and reproducible measurement of glenoid bone loss is therefore vital in evaluation of shoulder instability and recommending specific treatment. The aim of this systematic review is to identify the range methods and measurement techniques employed in clinical studies treating glenoid bone loss. Methods. A systematic review of the PubMed, MEDLINE, and Embase databases was undertaken to cover a ten-year period from February 2011 to February 2021. We identified clinical studies that incorporated bone loss assessment in the methodology as part of the decision-making in the management of patients with anterior shoulder instability. The Preferred Reporting Items for Systematic Reviews (PRISMA) were used. Results. A total of 5,430 articles were identified from the initial search, of which 82 studies met the final inclusion criteria. A variety of imaging methods were used: three studies did not specify which modality was used, and a further 13 used CT or MRI interchangeably. There was considerable heterogeneity among the studies that specified the technique used to quantify glenoid bone loss. A large proportion of the studies did not specify the technique used. Conclusion. This systematic review has identified significant heterogeneity in both the imaging modality and method used to measure glenoid bone loss. The recommendation is that as a minimum for publication, authors should be required to reference the specific measurement technique used. Without this simple standardization, it is impossible to determine whether any published paper should influence clinical practice or should be dismissed. Cite this article: Bone Joint J 2022;104-B(1):12–18


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1662 - 1668
1 Nov 2021
Bhanushali A Chimutengwende-Gordon M Beck M Callary SA Costi K Howie DW Solomon LB

Aims. The aims of this study were to compare clinically relevant measurements of hip dysplasia on radiographs taken in the supine and standing position, and to compare Hip2Norm software and Picture Archiving and Communication System (PACS)-derived digital radiological measurements. Methods. Preoperative supine and standing radiographs of 36 consecutive patients (43 hips) who underwent periacetabular osteotomy surgery were retrospectively analyzed from a single-centre, two-surgeon cohort. Anterior coverage (AC), posterior coverage (PC), lateral centre-edge angle (LCEA), acetabular inclination (AI), sharp angle (SA), pelvic tilt (PT), retroversion index (RI), femoroepiphyseal acetabular roof (FEAR) index, femoroepiphyseal horizontal angle (FEHA), leg length discrepancy (LLD), and pelvic obliquity (PO) were analyzed using both Hip2Norm software and PACS-derived measurements where applicable. Results. Analysis of supine and standing radiographs resulted in significant variation for measurements of PT (p < 0.001) and AC (p = 0.005). The variation in PT correlated with the variation in AC in a limited number of patients (R. 2. = 0.378; p = 0.012). Conclusion. The significant variation in PT and AC between supine and standing radiographs suggests that it may benefit surgeons to have both radiographs when planning surgical correction of hip dysplasia. We also recommend using PACS-derived measurements of AI and SA due to the poor interobserver error on Hip2Norm. Cite this article: Bone Joint J 2021;103-B(11):1662–1668


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 59 - 65
1 Jul 2021
Bracey DN Hegde V Shimmin AJ Jennings JM Pierrepont JW Dennis DA

Aims. Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy. Methods. THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using 3D reconstructions of the pelvis. Two cohorts were identified based on a CTL-CT error of ≥ 10° (n = 11) or < 10° (n = 36). Spinopelvic mobility parameters were compared using independent-samples t-tests. Correlation between error and mobility parameters were assessed with Pearson’s coefficient. Results. Patients with CTL error > 10° (10° to 14°) had stiffer lumbar spines with less mean lumbar flexion (38.9°(SD 11.6°) vs 47.4° (SD 13.1°); p = 0.030), different sagittal balance measured by pelvic incidence-lumbar lordosis mismatch (5.9° (SD 18.8°) vs -1.7° (SD 9.8°); p = 0.042), more pelvic extension when seated (pelvic tilt -9.7° (SD 14.1°) vs -2.2° (SD 13.2°); p = 0.050), and greater change in pelvic tilt between supine and seated positions (12.6° (SD 12.1°) vs 4.7° (SD 12.5°); p = 0.036). The CTL measurement error showed a positive correlation with increased CTL anteversion (r = 0.5; p = 0.001), standing lordosis (r = 0.23; p = 0.050), seated lordosis (r = 0.4; p = 0.009), and pelvic tilt change between supine and step-up positions (r = 0.34; p = 0.010). Conclusion. Differences in spinopelvic mobility may explain the variability of acetabular anteversion measurements made on CTL radiographs. Patients with stiff spines and increased compensatory pelvic movement have less accurate measurements on CTL radiographs. Flexion of the contralateral hip is required to obtain clear CTL radiographs. In patients with lumbar stiffness, this movement may extend the pelvis and increase anteversion of the acetabulum on CTL views. Reliable analysis of acetabular component anteversion in this patient population may require advanced imaging with a CT scan. Cite this article: Bone Joint J 2021;103-B(7 Supple B):59–65


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 498 - 502
1 Apr 2015
Deep K Eachempati KK Apsingi S

The restoration of knee alignment is an important goal during total knee arthroplasty (TKA). In the past surgeons aimed to restore neutral limb alignment during surgery. However, previous studies have demonstrated alignment to be dynamic, varying depending on the position of the limb and the degree of weight-bearing, and between patients. We used a validated computer navigation system to measure the femorotibial mechanical angle (FTMA) in 264 knees in 77 male and 55 female healthy volunteers aged 18 to 35 years (mean 26.2). We found the mean supine alignment to be a varus angle of 1.2° (standard deviation (sd) 4), with few patients having neutral alignment. FTMA differs significantly between males and females (with a mean varus of 1.7° (sd 4) and 0.4° (sd 3.9), respectively; p = 0.008). It changes significantly with posture, the knee hyperextending by a mean of 5.6°, and coronal plane alignment becoming more varus by 2.2° (sd 3.6) on standing compared with supine.

Knee alignment is different in different individuals and is dynamic in nature, changing with different postures. This may have implications for the assessment of alignment in TKA, which is achieved in non-weight-bearing conditions and which may not represent the situation observed during weight-bearing.

Cite this article: Bone Joint J 2015; 97-B:498–502


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1200 - 1209
14 Sep 2020
Miyamura S Lans J He JJ Murase T Jupiter JB Chen NC

Aims. We quantitatively compared the 3D bone density distributions on CT scans performed on scaphoid waist fractures subacutely that went on to union or nonunion, and assessed whether 2D CT evaluations correlate with 3D bone density evaluations. Methods. We constructed 3D models from 17 scaphoid waist fracture CTs performed between four to 18 weeks after fracture that did not unite (nonunion group), 17 age-matched scaphoid waist fracture CTs that healed (union group), and 17 age-matched control CTs without injury (control group). We measured the 3D bone density for the distal and proximal fragments relative to the triquetrum bone density and compared findings among the three groups. We then performed bone density measurements using 2D CT and evaluated the correlation with 3D bone densities. We identified the optimal cutoff with diagnostic values of the 2D method to predict nonunion with receiver operating characteristic (ROC) curves. Results. In the nonunion group, both the distal (100.2%) and proximal (126.6%) fragments had a significantly higher bone density compared to the union (distal: 85.7%; proximal: 108.3%) or control groups (distal: 91.6%; proximal: 109.1%) using the 3D bone density measurement, which were statistically significant for all comparisons. 2D measurements were highly correlated to 3D bone density measurements (Spearman’s correlation coefficient (R) = 0.85 to 0.95). Using 2D measurements, ROC curve analysis revealed the optimal cutoffs of 90.8% and 116.3% for distal and proximal fragments. This led to a sensitivity of 1.00 if either cutoff is met and a specificity of 0.82 when both cutoffs are met. Conclusion. Using 3D modelling software, nonunions were found to exhibit bone density increases in both the distal and proximal fragments in CTs performed between four to 18 weeks after fracture during the course of treatment. 2D bone density measurements using standard CT scans correlate well with 3D models. In patients with scaphoid fractures, CT bone density measurements may be useful in predicting the likelihood of nonunion. Cite this article: Bone Joint J 2020;102-B(9):1200–1209


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1239 - 1243
1 Dec 2023
Yoshitani J Sunil Kumar KH Ekhtiari S Khanduja V


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of soft-tissue balance in robotic arm-assisted TKA. Cite this article: Bone Jt Open 2021;2(11):974–980


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1348 - 1355
1 Nov 2019
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T

Aims. A retrospective study was conducted to measure short-term in vivo linear and volumetric wear of polyethylene (PE) inserts in 101 total knee arthroplasty (TKA) patients using model-based radiostereometric analysis (MBRSA). Patients and Methods. Nonweightbearing supine RSA exams were performed postoperatively and at six, 12, and 24 months. Weightbearing standing RSA exams were performed on select patients at 12 and 24 months. Wear was measured both linearly (joint space) and volumetrically (digital model overlap) at each available follow-up. Precision of both methods was assessed by comparing double RSA exams. Patient age, sex, body mass index, and Oxford Knee Scores were analyzed for any association with PE wear. Results. Linear wear occurred at 0.015 mm/year (supine) and 0.220 mm/year (standing). Volumetric wear occurred at 10.3 mm. 3. /year (supine) and 39.3 mm. 3. /year (standing). Wear occurred primarily on the medial side of the joint. Weightbearing imaging greatly improved the reliability of measurement. Clinical precision of volumetric wear was 34 mm. 3. No significant associations were found between patient demographics or function scores and measured wear. Conclusion. In vivo volumetric wear of TKAs can be assessed at short-term follow-up using MBRSA. Cite this article: Bone Joint J 2019;101-B:1348–1355


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1069 - 1073
1 Aug 2016
Stirling E Jeffery J Johnson N Dias J

Aims. The degree of displacement of a fracture of the distal radius is an important factor which can be assessed using simple radiographic measurements. Our aim was to investigate the reliability and reproducibility of these measurements and to determine if they should be used clinically. Patients and Methods. A 10% sample was randomly generated from 3670 consecutive adult patients who had presented to University Hospitals of Leicester NHS Trust between 2007 and 2010 with a fracture of the distal radius. Radiographs of the 367 patients were assessed by two independent reviewers. Four measurements of displacement of the fracture were recorded and the inter-observer correlation assessed using the intra-class correlation coefficient. Results. Inter-observer correlation was high (> 0.8) for three of the four measurements. Repeat measurements of a further randomly generated 10% sample (37) were made four weeks later to assess intra-observer agreement, which was again high (> 0.8) for the same three parameters (radial height, radial inclination and dorsal/palmar tilt). Correlation was poor for articular step and gap. Conclusion. Radiographic assessment of radial angle, radial inclination and dorsal/palmar tilt is a reliable method of determining the degree of displacement of a fracture of the distal radius. Cite this article: Bone Joint J 2016;98-B:1069–73


Bone & Joint Research
Vol. 3, Issue 10 | Pages 289 - 296
1 Oct 2014
van IJsseldijk EA Harman MK Luetzner J Valstar ER Stoel BC Nelissen RGHH Kaptein BL

Introduction. Wear of polyethylene inserts plays an important role in failure of total knee replacement and can be monitored in vivo by measuring the minimum joint space width in anteroposterior radiographs. The objective of this retrospective cross-sectional study was to compare the accuracy and precision of a new model-based method with the conventional method by analysing the difference between the minimum joint space width measurements and the actual thickness of retrieved polyethylene tibial inserts. . Method. Before revision, the minimum joint space width values and their locations on the insert were measured in 15 fully weight-bearing radiographs. These measurements were compared with the actual minimum thickness values and locations of the retrieved tibial inserts after revision. . Results. The mean error in the model-based minimum joint space width measurement was significantly smaller than the conventional method for medial condyles (0.50 vs 0.94 mm, p < 0.01) and for lateral condyles (0.06 vs 0.34 mm, p = 0.02). The precision (standard deviation of the error) of the methods was similar (0.84 vs 0.79 mm medially and both 0.46 mm laterally). The distance between the true minimum joint space width locations and the locations from the model-based measurements was less than 10 mm in the medial direction in 12 cases and less in the lateral direction in 13 cases. Conclusion. The model-based minimum joint space width measurement method is more accurate than the conventional measurement with the same precision. Cite this article: Bone Joint Res 2014;3:289–96


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 297 - 302
1 Mar 2019
Tamura K Takao M Hamada H Ando W Sakai T Sugano N

Aims. The aim of this study was to examine whether hips with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH) have significant asymmetry in femoral length, and to determine potential related factors. Patients and Methods. We enrolled 90 patients (82 female, eight male) with DDH showing unilateral OA changes, and 43 healthy volunteers (26 female, 17 male) as controls. The mean age was 61.8 years (39 to 93) for the DDH groups, and 71.2 years (57 to 84) for the control group. Using a CT-based coordinate measurement system, we evaluated the following vertical distances: top of the greater trochanter to the knee centre (femoral length GT), most medial prominence of the lesser trochanter to the knee centre (femoral length LT), and top of the greater trochanter to the medial prominence of the lesser trochanter (intertrochanteric distance), along with assessments of femoral neck anteversion and neck shaft angle. Results. The percentages of hips with an absolute difference of > 5 mm in femoral GT and LT lengths were significantly larger in the DDH group (24% for both) compared with those of the control group (2% and 7%, respectively). The femoral length GT of the affected femur was significantly shorter in Crowe I and longer in Crowe IV than that of the unaffected side. The affected-to-unaffected difference of the intertrochanteric distance showed positive correlation with that of the femoral length GT in Crowe I and Crowe II/III, and negative correlation with that of the femoral length LT in the Crowe I and Crowe IV groups. Conclusion. Hips with unilateral end-stage OA secondary to DDH show significant asymmetry in femoral length between both the greater and lesser trochanter and the knee compared with controls. The intertrochanteric distance was a morphological factor related to femoral-length asymmetry. When undertaking total hip arthroplasty (THA) in the presence of DDH, long leg radiographs or CT measurements should be used to assess true leg-length discrepancy. Cite this article: Bone Joint J 2019;101-B:297–302


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1510 - 1516
1 Nov 2016
Suter T Henninger HB Zhang Y Wylie JD Tashjian RZ

Aims. The aim of this study was to analyse the effect of altered viewing perspectives on the measurement of the glenopolar angle (GPA) and the differences between these measurements made on 3D CT reconstructions and anteroposterior (AP) scapular view radiographs. . Materials and Methods. The influence of the viewing perspective on the GPA was assessed, as were the differences in the measurements of the GPA between 3D CT reconstructions and AP scapular view radiographs in 68 cadaveric scapulae. Results. The median GPA in 3D reconstructions and AP scapular views were 42.7° (95% confidence intervals (CI), 42.0° to 43.5°) and 41.3° (95% CI 40.4° to 42.0°) respectively (p < 0.001). All but five of 20 malpositions demonstrated a significant difference in GPA compared with the respective AP scapular view (p ≤ 0.005). The GPA was most susceptible to malposition in retroversion/anteversion. Inter- and intra-observer reliability for all measurements of the GPA was excellent for 3D CT reconstructions (intraclass correlation (ICC) 0.93 (95% CI 0.87 to 0.96) and 0.94 (95% CI 0.89 to 0.97), respectively) and higher than on AP scapular radiographs (p < 0.001). The intra- and inter-observer reliability was excellent in AP scapular views and malpositions in extension/flexion (ICC ≥ 0.84) but tended to decrease with increasing viewing angle in retroversion/anteversion. Conclusion. These data suggest that 3D reconstructions are more reproducible than AP scapular radiographs in the assessment of the GPA and should be used to compare data in different studies, to predict outcome, define malunion, and act as an indication for surgery in patients with a scapular fracture. Cite this article: Bone Joint J 2016;98-B:1510–16


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 877 - 880
1 Jul 2013
Lee YK Kim TY Ha YC Kang BJ Koo KH

Version of the femoral stem is an important factor influencing the risk of dislocation after total hip replacement (THR) as well as the position of the acetabular component. However, there is no radiological method of measuring stem anteversion described in the literature. We propose a radiological method to measure stem version and have assessed its reliability and validity. In 36 patients who underwent THR, a hip radiograph and CT scan were taken to measure stem anteversion. The radiograph was a modified Budin view. This is taken as a posteroanterior radiograph in the sitting position with 90° hip flexion and 90° knee flexion and 30° hip abduction. The angle between the stem-neck axis and the posterior intercondylar line was measured by three independent examiners. The intra- and interobserver reliabilities of each measurement were examined. The radiological measurements were compared with the CT measurements to evaluate their validity. The mean radiological measurement was 13.36° (. sd. 6.46) and the mean CT measurement was 12.35° (. sd. 6.39) (p = 0.096). The intra- and interobserver reliabilities were excellent for both measurements. The radiological measurements correlated well with the CT measurements (p = 0.001, r = 0.877). The modified Budin method appears reliable and valid for the measurement of femoral stem anteversion. Cite this article: Bone Joint J 2013;95-B:877–80


Bone & Joint Research
Vol. 5, Issue 8 | Pages 320 - 327
1 Aug 2016
van IJsseldijk EA Valstar ER Stoel BC Nelissen RGHH Baka N van’t Klooster R Kaptein BL

Objectives. An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. Materials and Methods. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. Results. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). Conclusion. The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development. Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van’t Klooster, B. L. Kaptein. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;320–327. DOI: 10.1302/2046-3758.58.2000626


Bone & Joint Research
Vol. 4, Issue 5 | Pages 78 - 83
1 May 2015
Martinkevich P Rahbek O Møller-Madsen B Søballe K Stilling M

Objectives. Lengthening osteotomies of the calcaneus in children are in general grafted with bone from the iliac crest. Artificial bone grafts have been introduced, however, their structural and clinical durability has not been documented. Radiostereometric analysis (RSA) is a very accurate and precise method for measurements of rigid body movements including the evaluation of joint implant and fracture stability, however, RSA has not previously been used in clinical studies of calcaneal osteotomies. We assessed the precision of RSA as a measurement tool in a lateral calcaneal lengthening osteotomy (LCLO). Methods. LCLO was performed in six fixed adult cadaver feet. Tantalum markers were inserted on each side of the osteotomy and in the cuboideum. Lengthening was done with a plexiglas wedge. A total of 24 radiological double examinations were obtained. Two feet were excluded due to loose and poorly dispersed markers. Precision was assessed as systematic bias and 95% repeatability limits. Results. Systematic bias was generally below 0.10 mm for translations. Precision of migration measurements was below 0.2 mm for translations in the osteotomy. Conclusion. RSA is a precise tool for the evaluation of stability in LCLO. Cite this article: Bone Joint Res 2015;4:78–83