Femoral revision after cemented total hip replacement
(THR) might include technical difficulties, following essential cement
removal, which might lead to further loss of bone and consequently
inadequate fixation of the subsequent revision stem. . Femoral impaction allografting has been widely used in revision
surgery for the acetabulum, and subsequently for the femur. In combination
with a primary cemented stem,
Aims. Metaphyseal cones with cemented stems are frequently used in revision total knee arthroplasty (TKA). However, if the diaphysis has been previously violated, the resultant sclerotic canal can impair cemented stem fixation, which is vital for bone ingrowth into the cone, and long-term fixation. We report the outcomes of our solution to this problem, in which
Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during
Aims. We compared the clinical outcomes of curved intertrochanteric varus osteotomy (CVO) with bone
We report the results of cancellous femoral
In order to investigate the osteoinductive properties of allograft used in
This study investigates the use of porous biphasic ceramics as graft extenders in
We describe the results of 81 consecutive revision
total hip replacements with
This review summarises the technique of impaction
grafting with mesh augmentation for the treatment of uncontained
acetabular defects in revision hip arthroplasty. The ideal acetabular revision should restore bone stock, use
a small socket in the near-anatomic position, and provide durable
fixation. Impaction bone grafting, which has been in use for over
40 years, offers the ability to achieve these goals in uncontained
defects. The precepts of modern, revision
We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation. A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen. These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported.
We report the histology of a femur retrieved 3.5 years after a cemented revision of a hip replacement in which impaction allografting had been used to fill two large cortical defects. The allograft chips had largely been replaced by viable cortical bone, and the interface between cement and tissue resembled that seen after primary cemented arthroplasty.
Aims. This single-centre observational study aimed to describe the results of extensive bone
Aims. Femoral impaction bone grafting was first developed in 1987 using
morselised cancellous bone graft impacted into the femoral canal
in combination with a cemented, tapered, polished stem. We describe
the evolution of this technique and instrumentation since that time. . Patients and Methods. Between 1987 and 2005, 705 revision total hip arthroplasties
(56 bilateral) were performed with femoral
We reviewed retrospectively the outcome of the treatment by
Aims. The aim of this study was to compare the incidence of aseptic
loosening after the use of a cemented acetabular component and a
Trabecular Metal (TM) acetabular component (Zimmer Inc., Warsaw,
Indiana) at acetabular revision with bone
The April 2014 Hip & Pelvis Roundup. 360 . looks at: Recent arthroplasty and flight; whether that squeak could be a fracture; diagnosing early infected hip replacement;
The December 2013 Hip &
Pelvis Roundup. 360 . looks at: Enhanced recovery works; Acetabular placement; Exercise better than rest in osteoarthritis patients; if Birmingham hip resurfacing is immune from pseudotumour; HIV and arthroplasty; Labral tears revisited; Prophylactic surgery for FAI; and Ceramics and
Revision total hip arthroplasty (THA) is projected
to increase by 137% from the years 2005 to 2030. Reconstruction of
the femur with massive bone loss can be a formidable undertaking.
The goals of revision surgery are to create a stable construct,
preserve bone and soft tissues, augment deficient host bone, improve
function, provide a foundation for future surgery, and create a
biomechanically restored hip. Options for treatment of the compromised femur
include: resection arthroplasty, allograft prosthetic composite
(APC), proximal femoral replacement, cementless fixation with a
modular tapered fluted stem, and
The clinical and radiological results of 50 consecutive acetabular reconstructions in 48 patients using
A two-stage procedure was carried out on 57 patients with confirmed infection in a hip replacement. Allograft bone was used in the second stage. Pathogenic organisms were identified in all patients. In stage 1, the prosthesis was removed together with infected tissue. Antibiotics were added to customised cement beads. Systemic antibiotics were not used. At the second stage, 45 of the patients had either acetabular