Aims.
Aims. To provide normative data that can assess spinal-related disability and the prevalence of back or leg pain among adults with no spinal conditions in the UK using validated questionnaires. Methods. A total of 1,000 participants with equal sex distribution were included and categorized in five age groups: 20 to 29, 30 to 39, 40 to 49, 50 to 59, and 60 to 69 years. Individuals with spinal pathologies were excluded. Participants completed the
We reviewed 31 consecutive patients with Friedreich’s
ataxia and scoliosis. There were 24 males and seven females with
a mean age at presentation of 15.5 years (8.6 to 30.8) and a mean
curve of 51° (13° to 140°). A total of 12 patients had thoracic
curvatures, 11 had thoracolumbar and eight had double thoracic/lumbar.
Two patients had long thoracolumbar collapsing scoliosis with pelvic
obliquity and four had hyperkyphosis. Left-sided thoracic curves in
nine patients (45%) and increased thoracic kyphosis differentiated
these deformities from adolescent idiopathic scoliosis. There were
17 patients who underwent a posterior instrumented spinal fusion
at mean age of 13.35 years, which achieved and maintained good correction
of the deformity. Post-operative complications included one death due
to cardiorespiratory failure, one revision to address nonunion and
four patients with proximal junctional kyphosis who did not need
extension of the fusion. There were no neurological complications
and no wound infections. The rate of progression of the scoliosis
in children kept under simple observation and those treated with bracing
was less for lumbar curves during bracing and similar for thoracic
curves. The scoliosis progressed in seven of nine children initially
treated with a brace who later required surgery. Two patients presented
after skeletal maturity with balanced curves not requiring correction.
Three patients with severe deformities who would benefit from corrective
surgery had significant cardiac co-morbidities.
Aims. Only a few studies have investigated the long-term health-related quality of life (HRQoL) in patients with an idiopathic scoliosis. The aim of this study was to investigate the overall HRQoL and employment status of patients with an idiopathic scoliosis 40 years after diagnosis, to compare it with that of the normal population, and to identify possible predictors for a better long-term HRQoL. Methods. We reviewed the full medical records and radiological reports of patients referred to our hospital with a scoliosis of childhood between April 1972 and April 1982. Of 129 eligible patients with a juvenile or adolescent idiopathic scoliosis, 91 took part in the study (71%). They were evaluated with full-spine radiographs and HRQoL questionnaires and compared with normative data. We compared the HRQoL between observation (n = 27), bracing (n = 46), and surgical treatment (n = 18), and between thoracic and thoracolumbar/lumbar (TL/L) curves. Results. The mean time to follow-up was 40.8 years (SD 2.6) and the mean age of patients was 54.0 years (SD 2.7). Of the 91 patients, 86 were female (95%) and 51 had a main thoracic curve (53%). We found a significantly lower HRQoL measured on all the
Clinical, radiological, and
We determined the frequency, rate and extent
of development of scoliosis (coronal plane deformity) in wheelchair-dependent
patients with Duchenne muscular dystrophy (DMD) who were not receiving
steroid treatment. We also assessed kyphosis and lordosis (sagittal
plane deformity). The extent of scoliosis was assessed on sitting anteroposterior
(AP) spinal radiographs in 88 consecutive non-ambulatory patients
with DMD. Radiographs were studied from the time the patients became
wheelchair-dependent until the time of spinal fusion, or the latest assessment
if surgery was not undertaken. Progression was estimated using a
longitudinal mixed-model regression analysis to handle repeated
measurements.
Aims. We present the results of correcting a double or triple curve
adolescent idiopathic scoliosis using a convex segmental pedicle
screw technique. Patients and Methods. We reviewed 191 patients with a mean age at surgery of 15 years
(11 to 23.3). Pedicle screws were placed at the convexity of each
curve. Concave screws were inserted at one or two cephalad levels
and two caudal levels. The mean operating time was 183 minutes (132
to 276) and the mean blood loss 0.22% of the total blood volume
(0.08% to 0.4%). Multimodal monitoring remained stable throughout
the operation. The mean hospital stay was 6.8 days (5 to 15). Results. The mean post-operative follow-up was 5.8 years (2.5 to 9.5).
There were no neurological complications, deep wound infection,
obvious nonunion or need for revision surgery. Upper thoracic scoliosis was corrected by a mean 68.2% (38% to
48%, p <
0.001). Main thoracic scoliosis was corrected by a mean
71% (43.5% to 8.9%, p <
0.001). Lumbar scoliosis was corrected
by a mean 72.3% (41% to 90%, p <
0.001). No patient lost more
than 3° of correction at follow-up. The thoracic kyphosis improved
by 13.1° (-21° to 49°, p <
0.001); the lumbar lordosis remained
unchanged (p = 0.58). Coronal imbalance was corrected by a mean
98% (0% to 100%, p <
0.001). Sagittal imbalance was corrected
by a mean 96% (20% to 100%, p <
0.001). The
The prevalence of scoliosis is not known in patients with idiopathic short stature, and the impact of treatment with recombinant human growth hormone on those with scoliosis remains controversial. We investigated the prevalence of scoliosis radiologically in children with idiopathic short stature, and the impact of treatment with growth hormone in a cross-sectional and retrospective cohort study. A total of 2,053 children with idiopathic short stature and 4,106 age- and sex-matched (1:2) children without short stature with available whole-spine radiographs were enrolled in the cross-sectional study. Among them, 1,056 with idiopathic short stature and 790 controls who had radiographs more than twice were recruited to assess the development and progression of scoliosis, and the need for bracing and surgery.Aims
Methods
This study aimed to evaluate rasterstereography of the spine as a diagnostic test for adolescent idiopathic soliosis (AIS), and to compare its results with those obtained using a scoliometer. Adolescents suspected of AIS and scheduled for radiographs were included. Rasterstereographic scoliosis angle (SA), maximal vertebral surface rotation (ROT), and angle of trunk rotation (ATR) with a scoliometer were evaluated. The area under the curve (AUC) from receiver operating characteristic (ROC) plots were used to describe the discriminative ability of the SA, ROT, and ATR for scoliosis, defined as a Cobb angle > 10°. Test characteristics (sensitivity and specificity) were reported for the best threshold identified using the Youden method. AUC of SA, ATR, and ROT were compared using the bootstrap test for two correlated ROC curves method.Aims
Methods
We report the results of vertebral column resection
(VCR) for paediatric patients with spinal deformity. A total of
49 VCRs in paediatric patients from four university hospitals between
2005 and 2009 with a minimum two-year follow-up were retrospectively
identified. After excluding single hemivertebral resections (n =
25) and VCRs performed for patients with myelomeningocele (n = 6),
as well as spondylectomies performed for tumour (n = 4), there were
14 patients who had undergone full VCR at a mean age of 12.3 years
(6.5 to 17.9). The aetiology was congenital scoliosis in five, neuromuscular
scoliosis in three, congenital kyphosis in two, global kyphosis
in two, adolescent idiopathic scoliosis in one and secondary scoliosis
in one. A total of seven anteroposterior and seven posterolateral approaches
were used. The mean major curve deformity was 86° (67° to 120°) pre-operatively
and 37° (17° to 80°) at the two-year follow-up; correction was a
mean of 54% (18% to 86%) in the anteroposterior and 60% (41% to
70%) in the posterolateral group at the two-year follow-up (p =
0.53). The mean
The Cochrane Collaboration has produced five new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner These reviews are relevant to a wide range of musculoskeletal specialists, and include reviews in Morton’s neuroma, scoliosis, vertebral fractures, carpal tunnel syndrome, and lower limb arthroplasty.
To determine the value of scoliosis surgery, it is necessary to evaluate outcomes in domains that matter to patients. Since randomized trials on adolescent idiopathic scoliosis (AIS) are scarce, prospective cohort studies with comparable outcome measures are important. To enhance comparison, a core set of patient-related outcome measures is available. The aim of this study was to evaluate the outcomes of AIS fusion surgery at two-year follow-up using the core outcomes set. AIS patients were systematically enrolled in an institutional registry. In all, 144 AIS patients aged ≤ 25 years undergoing primary surgery (median age 15 years (interquartile range 14 to 17) were included. Patient-reported (condition-specific and health-related quality of life (QoL); functional status; back and leg pain intensity) and clinician-reported outcomes (complications, revision surgery) were recorded. Changes in patient-reported outcome measures (PROMs) were analyzed using Friedman’s analysis of variance. Clinical relevancy was determined using minimally important changes (Scoliosis Research Society (SRS)-22r), cut-off values for relevant effect on functioning (pain scores) and a patient-acceptable symptom state (PASS; Oswestry Disability Index).Aims
Methods
The outcome following the development of neurological complications after corrective surgery for scoliosis varies from full recovery to a permanent deficit. This study aimed to assess the prognosis and recovery of major neurological deficits in these patients, and to determine the risk factors for non-recovery, at a minimum follow-up of two years. A major neurological deficit was identified in 65 of 8,870 patients who underwent corrective surgery for scoliosis, including eight with complete paraplegia and 57 with incomplete paraplegia. There were 23 male and 42 female patients. Their mean age was 25.0 years (SD 16.3). The aetiology of the scoliosis was idiopathic (n = 6), congenital (n = 23), neuromuscular (n = 11), neurofibromatosis type 1 (n = 6), and others (n = 19). Neurological function was determined by the American Spinal Injury Association (ASIA) impairment scale at a mean follow-up of 45.4 months (SD 17.2). the patients were divided into those with recovery and those with no recovery according to the ASIA scale during follow-up.Aims
Methods
The association between spondylolisthesis and scoliosis was studied in 84 patients who presented during a 30-year period with symptomatic spondylolisthesis. The incidence of scoliosis was 42 per cent, the majority of cases being lumbar or thoracolumbar curves of less than 15 degrees. The incidence was highest in the group of patients with spondylolisthesis at L4--5 where all except one had scoliosis.
The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction.
Historically, patients undergoing surgery for adolescent idiopathic scoliosis (AIS) have been nursed postoperatively in a critical care (CC) setting because of the challenges posed by prone positioning, extensive exposures, prolonged operating times, significant blood loss, major intraoperative fluid shifts, cardiopulmonary complications, and difficulty in postoperative pain management. The primary aim of this paper was to determine whether a scoring system, which uses Cobb angle, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and number of levels to be fused, is a valid method of predicting the need for postoperative critical care in AIS patients who are to undergo scoliosis correction with posterior spinal fusion (PSF). We retrospectively reviewed all AIS patients who had undergone PSF between January 2018 and January 2020 in a specialist tertiary spinal referral centre. All patients were assessed preoperatively in an anaesthetic clinic. Postoperative care was defined as ward-based (WB) or critical care (CC)Aims
Methods
To determine whether side-bending films in scoliosis are assessed for adequacy in clinical practice; and to introduce a novel method for doing so. Six surgeons and eight radiographers were invited to participate in four online surveys. The generic survey comprised erect and left and right bending radiographs of eight individuals with scoliosis, with an average age of 14.6 years. Respondents were asked to indicate whether each bending film was optimal (adequate) or suboptimal. In the first survey, they were also asked if they currently assessed the adequacy of bending films. A similar second survey was sent out two weeks later, using the same eight cases but in a different order. In the third survey, a guide for assessing bending film adequacy was attached along with the radiographs to introduce the novel T1-45B method, in which the upper endplate of T1 must tilt ≥ 45° from baseline for the study to be considered optimal. A fourth and final survey was subsequently conducted for confirmation.Aims
Methods
The aim of this study was to determine whether there is an increased prevalence of scoliosis in patients who have suffered from a haematopoietic malignancy in childhood. Patients with a history of lymphoma or leukaemia with a current age between 12 and 25 years were identified from the regional paediatric oncology database. The medical records and radiological findings were reviewed, and any spinal deformity identified. The treatment of the malignancy and the spinal deformity, if any, was noted.Aims
Methods
Severe spinal deformity in growing patients often requires surgical management. We describe the incidence of spinal deformity surgery in a National Health Service. Descriptive study of prospectively collected data. Clinical data of all patients undergoing surgery for spinal deformity between 2005 and 2018 was collected, compared to the demographics of the national population, and analyzed by underlying aetiology.Aims
Methods
To report the outcome of spinal deformity correction through anterior spinal fusion in wheelchair-bound patients with myelomeningocele. We reviewed 12 consecutive patients (7M:5F; mean age 12.4 years (9.2 to 16.8)) including demographic details, spinopelvic parameters, surgical correction, and perioperative data. We assessed the impact of surgery on patient outcomes using the Spina Bifida Spine Questionnaire and a qualitative questionnaire.Aims
Methods
Experimental evidence has accumulated in recent years to suggest that scoliosis can be caused by asymmetrical spinal muscle weakness due to sensorineural loss, though this suggestion has not achieved universal acceptance. The evidence is supported by histopathological observations on cases of clinical idiopathic scoliosis. A study is presented in which cynomolgus monkeys had one, two or three dorsal spinal nerve roots cut.
With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety. Cite this article:
Magnetically controlled growing rods (MCGRs) allow non-invasive
correction of the spinal deformity in the treatment of early-onset
scoliosis. Conventional growing rod systems (CGRS) need repeated
surgical distractions: these are associated with the effect of the
‘law of diminishing returns’. The primary aim of this study was to quantify this effect in
MCGRs over sequential distractions. A total of 35 patients with a maximum follow-up of 57 months
were included in the study. There were 17 boys and 18 girls with
a mean age of 7.4 years (2 to 14). True Distraction (TD) was determined
by measuring the expansion gap on fluoroscopy. This was compared
with Intended Distraction (ID) and expressed as the ‘T/I’ ratio.
The T/I ratio and the Cobb angle were calculated at several time
points during follow-up.Aims
Patients and Methods
Adolescent idiopathic scoliosis affects about
3% of children. Non-operative measures are aimed at altering the natural
history to maintain the size of the curve below 40° at skeletal
maturity. The application of braces to treat spinal deformity pre-dates
the era of evidence-based medicine, and there is a paucity of irrefutable
prospective evidence in the literature to support their use and
their effectiveness has been questioned. This review considers this evidence. The weight of the evidence
is in favour of bracing over observation. The most recent literature
has moved away from addressing this question, and instead focuses
on developments in the design of braces and ways to improve compliance. Cite this article:
The purpose of this study was to evaluate the
long-term outcome of adults with spina bifida cystica (SBC) who
had been treated either operatively or non-operatively for scoliosis
during childhood. We reviewed 45 patients with a SBC scoliosis (Cobb angle ≥ 50º)
who had been treated at one of two children’s hospitals between
1991 and 2007. Of these, 34 (75.6%) had been treated operatively
and 11 (24.4%) non-operatively. After a mean follow-up of 14.1 years
(standard deviation ( Although patients in the two groups were demographically similar,
those who had undergone surgery had a larger mean Cobb angle (88.0º
( Spinal fusion in SBC scoliosis corrects coronal deformity and
stops progression of the curve but has no clear effect on HRQOL. Cite this article:
We report the use of the distal radius and ulna (DRU) classification
for the prediction of peak growth (PG) and growth cessation (GC)
in 777 patients with idiopathic scoliosis. We compare this classification
with other commonly used parameters of maturity. The following data were extracted from the patients’ records
and radiographs: chronological age, body height (BH), arm span (AS),
date of menarche, Risser sign, DRU grade and status of the phalangeal
and metacarpal physes. The mean rates of growth were recorded according
to each parameter of maturity. PG was defined as the summit of the curve
and GC as the plateau in deceleration of growth. The rates of growth
at PG and GC were used for analysis using receiver operating characteristic
(ROC) curves to determine the strength and cutoff values of the
parameters of growth.Aims
Patients and Methods
Structural scoliosis occurs more commonly in patients with juvenile chronic arthritis than in the normal population. We have reviewed 32 patients with both juvenile arthritis and a scoliosis and suggest that structural curves may arise from postural curves associated with asymmetrical involvement of lower limb joints.
1. The equipment used in the correction of scoliosis by the anterior route is described. 2. The important points in surgical technique are emphasised. 3. The results of operation on fifty-one patients are analysed. 4. Attention is drawn to the high rate of fusion, the stability of correction, and the brevity of the period of convalescence.
1. In this analysis of forty-three patients with syringomyelia, twenty-seven (63 per cent) had scoliosis. This association is probably due to the early involvement of the ventro-medial and dorso-medial nuclei of the spinal cord by expanding lesions. 2. The literature makes no reference to the treatment of scoliosis associated with syringomyelia. Two cases are presented of attempts to correct this scoliosis–one because of increasing deformity, the other for increasing backache. 3. Due to the presence of cystic lesions characteristic of syringomyelia, corrective operative treatment of scoliosis may present an added risk. 4. Because of the high incidence of scoliosis in patients with syringomyelia, any patient with scoliosis should be examined for evidence of neurological deficit.
1. Analysis of eighty-one patients with neurofibromatosis showed that sixty-two (76 per cent) had café-au-lait markings; 12 per cent had significant spinal deformity. 2. Thirty-three examples of spinal deformity in neurofibromatosis showed a wide variety of patterns and severity of the adult curve. There was no evidence that there was any recognisable pattern of scoliosis in neurofibromatosis. No evidence was discovered to suggest that any acquired local abnormality of bone contributed to the deformity. 3. Some of the severe deformities showed a pattern similar to that seen in the congenital sco1ioses, and this might be the link between the neurofibromatosis and the spinal deformity.
Four cases are reported in which infantile idiopathic structural scoliosis gradually decreased during the period of active growth.
The etiological factors concerned in paralytic scoliosis are complex. Four main types of paralytic scoliosis can be recognised. 1. The general C-curve due to the body's anatomical attempt to shift its centre of gravity towards the weaker side. Vertebral rotation is not usually marked. This type usually occurs when patients with relatively slight paralysis have been allowed up too early ; it does not usually progress to severe deformity but may occasionally do so, gradually changing into Type 2. This type usually responds well to a period of rest and muscle redevelopment in recumbency. It also responds favourably to correction and fusion because correction is easy and there is little tendency to deterioration. Many of the "successes" of correction and fusion are in this classâalmost equal success would often have been gained without "correction." The spine is slightly, but not very, unstable and a relatively localised fusion will give the little extra support that is needed. 2. The "general collapse" type of curve due to extensive spinal weakness. This is the type in which simple head suspension produces marked correction. Rotation is moderate. Provided the patient's general condition is satisfactory extensive spinal fusion is usually the best treatment and produces gratifying improvement. 3. The primary lumbar curve due to a combination of pelvic obliquity, extraspinal imbalance and imbalance of the deep rotator muscles. Rotation is usually marked. Treatment must include the correction of all these factors. In mild cases correction of the pelvic obliquity is enough, but in marked cases the spine must also be corrected. The disability from a lumbar paralytic scoliosis is much greater than that from a lumbar idiopathic scoliosis of the same degree; so correction is necessary in this type. Correction in a Risser-type jacket is often inadequate and recourse to operative correction is usually required. 4. The primary thoracic curveâoften associated with weakness of the scapular muscles. The indications for and methods of treatment are practically the same as in primary idiopathic thoracic curves. These curves tend to be progressive and uncompensated. Although the most popular treatment is correction and fusion, wedge osteotomy of the spine gives better correction in intractable cases. The main need is for further investigation into the etiology of paralytic scoliosis so that adequate preventive measures may be undertaken at an early stage. It is essential that every child who contracts poliomyelitis should have his back muscles examined before he gets up. If there is any suggestion of scoliosis further investigations including radiography and electromyography are essential.
1. The prognosis of paralytic scoliosis has been studied by defining curve patterns and establishing the natural development as seen in fully grown patients who have not had surgical correction. 2. The prognosis, unlike that in idiopathic scoliosis, is related to the age of onset of the curvature and the degree of muscle imbalance rather than the site of the primary curve. 3. Paralysis of limb muscles is shown to be unrelated to the development of scoliosis. The intercostal muscles and the lateral abdominal flexors produce scoliosis when weaker on the convex side of the curve. Gravity and the other trunk muscles certainly play a part in the development of lumbar curves but their importance is difficult to assess.
The evolution of an idiopathic scoliosis is determined by the site of the primary curve and by the age of onset. It is significant that thoracic primary curves are commonly severe and the early onset of this curve accentuates this feature. Early operation based on prognosis is practised but sufficient time has not yet elapsed to justify any conclusions.
1. Five cases of scoliosis with paraplegia are reported, and thirty-six comparable cases from the literature are reviewed. These forty-one cases have been studied with the object of determining the etiology of scoliosis, the reason why cord compression sometimes develops, and the results of conservative and operative treatment of such compression of the cord. 2. The cause of paraplegia is nearly always compression of the spinal cord by the dura, which, in severe scoliosis, is under longitudinal tension because of its firm attachment to the foramen magnum above and the sacrum below. Such tension, resisting displacement of the spinal cord from the straight line, may be shown to cause incomplete spinal block even when there is no paralysis. 3. When paralysis occurs it usually develops during the years of most rapid growth, the tight dura being unable to accommodate itself to the rate of growth of the spinal column; cord compression is probably increased by narrowing of the dural sac by rotational displacement. 4. The most striking results have been secured by laminectomy with section of the dura and sometimes division of dentate ligaments and tight nerve roots. After such division there is evidence of release of compression: the cord herniates through the dural slit; and spinal pulsation returns. 5. It is important to control bleeding in order to avoid post-operative compression by blood clot; and to prevent leakage of cerebro-spinal fluid through the arachnoid. 6. It is unwise to perform spinal fusion at the same time as decompression because it increases the danger of haematoma formation. Moreover the improvement gained by decompression is maintained even if no fusion of the spine is performed. 7. Conservative treatment of scoliosis with paraplegia should not be continued for long periods unless there is evidence of early and progressive improvement because prolonged compression causes irreversible changes in the cord. 8. In three cases, paraplegia was not due to dural compression: one turned out later to be a case of syringomyelia; one, reported by Heyman, was due to the pressure of a bone spur; and one, reported in this series, was due to a congenital tight band of developmental origin which might have caused the scoliosis as well as the paralysis, and in which, after resection of the band, recovery from the paralysis was complete.
Conventional growing rods are the most commonly
used distraction-based devices in the treatment of progressive early-onset
scoliosis. This technique requires repeated lengthenings with the
patient anaesthetised in the operating theatre. We describe the
outcomes and complications of using a non-invasive magnetically
controlled growing rod (MCGR) in children with early-onset scoliosis.
Lengthening is performed on an outpatient basis using an external remote
control with the patient awake. Between November 2009 and March 2011, 34 children with a mean
age of eight years (5 to 12) underwent treatment. The mean length
of follow-up was 15 months (12 to 18). In total, 22 children were
treated with dual rod constructs and 12 with a single rod. The mean
number of distractions per patient was 4.8 (3 to 6). The mean pre-operative
Cobb angle was 69° (46° to 108°); this was corrected to a mean 47°
(28° to 91°) post-operatively. The mean Cobb angle at final review
was 41° (27° to 86°). The mean pre-operative distance from T1 to
S1 was 304 mm (243 to 380) and increased to 335 mm (253 to 400)
in the immediate post-operative period. At final review the mean distance
from T1 to S1 had increased to 348 mm (260 to 420). Two patients developed a superficial wound infection and a further
two patients in the single rod group developed a loss of distraction.
In the dual rod group, one patient had pull-out of a hook and one
developed prominent metalwork. Two patients had a rod breakage;
one patient in the single rod group and one patient in the dual
rod group. Our early results show that the MCGR is safe and effective
in the treatment of progressive early-onset scoliosis with the avoidance
of repeated surgical lengthenings. Cite this article:
This is a study of children who first attended as infants with either progressive infantile idiopathic scoliosis or congenital scoliosis. All had a pattern of scoliosis in which early and damaging deterioration is inevitable. The infants were treated from before the age of three, initially by plaster casts and then a Milwaukee brace, followed at about the age of ten by correction and fusion. The cases were then observed to the end of growth or near that point. In the main study there were twelve cases, six of progressive infantile idiopathic scoliosis and six of congenital scoliosis, which were followed through this long period. Only one of the twelve had a curve worse at the end of growth compared with the initial radiograph as an infant; this one curve had increased only 16 degrees in almost as many years. Although small, the series does show that it is nearly always possible to control even the most serious scoliosis in an infant, if it is tackled early and unremittingly. There are supportive studies of children who have partially completed this regime, and interim results in a newer group of children with spina bifida and scoliosis.
An attempt to produce scoliosis in young baboons by excision of the heads of ribs failed in thirteen growing animals observed for up to a year after operation. Other investigators have failed to produce scoliosis in primates by similar and other techniques that had successfully produced scoliosis in quadruped animals. The possible reasons for this are discussed, especially in the light of clinical trials that are being carried out with techniques transposed from the quadruped experimental animal to the scoliosis clinic.