The aim of this study was to analyze drain fluid, blood, and urine simultaneously to follow the long-term release of vancomycin from a biphasic ceramic carrier in major hip surgery. Our hypothesis was that there would be high local vancomycin concentrations during the first week with safe low systemic trough levels and a complete antibiotic release during the first month. Nine patients (six female, three male; mean age 75.3 years (sd 12.3; 44 to 84)) with trochanteric hip fractures had internal fixations. An injectable ceramic bone substitute, with hydroxyapatite in a calcium sulphate matrix, containing 66 mg of vancomycin per millilitre, was inserted to augment the fixation. The vancomycin elution was followed by simultaneously collecting drain fluid, blood, and urine.Objectives
Methods
Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) Objectives
Materials and Methods