Aims. A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the
Aims. Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results. Radiographs and histology demonstrated impaired
Objectives. Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on
Aims. A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating
Objectives. Diabetes mellitus (DM) is known to impair
Objectives. The osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) balance is of the utmost importance in
Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of
Objectives. As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on
Aims. Little is known about the effect of haemorrhagic shock and resuscitation
on
Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair.
This prospective multicentre study was undertaken
to determine whether the timing of the post-operative administration
of bisphosphonate affects
Fracture repair occurs by two broad mechanisms:
direct healing, and indirect healing with callus formation. The effects
of bisphosphonates on fracture repair have been assessed only in
models of indirect
Aims. Bone turnover markers (BTMs) follow distinct trends after fractures and limited evidence suggests differential levels in BTMs in patients with delayed healing. The effect of vitamin D, and other factors that influence BTMs and
Aims. Alcoholism is a well-known detrimental factor in
Aims. This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. Methods. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate
Objectives.
Aims. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in
Aims. Though most humeral shaft
Highly active anti-retroviral therapy has transformed HIV into a chronic disease with a long-term asymptomatic phase. As a result, emphasis is shifting to other effects of the virus, aside from immunosuppression and mortality. We have reviewed the current evidence for an association between HIV infection and poor
Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. Methods. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme. Results. The bench test showed that a weight loading < 500 g did not affect the operation of experimental device. The compression test demonstrated that the stiffness of the device was sufficient to keep the uncontrollable motion between fracture ends, resulting from the rat’s daily activities, within 1% strain. In vivo results on 15 rats prove that the device works reliably, without overburdening the experimental animals, and provides standardized micromotion reproductively at the fracture site according to the set parameters. Conclusion. Our device was able to investigate the effect of micromotion parameters on
Objectives. We investigated the effects on
Aims. Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. Methods. The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series. Results. In all, 94 eligible studies were identified. The clinical and methodological aspects of the studies were too heterogeneous for a meta-analysis to be undertaken. A narrative synthesis examined study characteristics, stem cell methods (source, aspiration, concentration, and application) and outcomes. Conclusion. Insufficient high-quality evidence is available to determine the efficacy of stem cells for
Aims. The study objective was to prospectively assess clinical outcomes for a pilot cohort of tibial shaft fractures treated with a new tibial nailing system that produces controlled axial interfragmentary micromotion. The hypothesis was that axial micromotion enhances
Aims. There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods. A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results. Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced
Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of
Aims. The modified Radiological Union Scale for Tibia (mRUST) fractures score was developed in order to assess progress to union and define a numerical assessment of
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response. The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate
We studied the effect of vitamin C on
Platelet-derived growth factor (PDGF) is known
to stimulate osteoblast or osteoprogenitor cell activity. We investigated
the effect of locally applied PDGF from poly-. d. ,l-lactide
(PDLLA)-coated implants on
A balanced inflammatory response is important for successful
We studied 56 patients with fractures of the tibial shaft in a multicentre prospective randomised trial of three methods of external fixation. Group I was treated with a fixator which was unlocked at 4 to 6 weeks to allow free axial compression (axial dynamisation) with weight-bearing. Group II was treated with a fixator that was similarly unlocked at 4 to 6 weeks but included a small silicone spring which on weight-bearing could be compressed by up to 2 mm. this spring returns to its original length on cessation of weight-bearing thus allowing cycles of motion of up to 2 mm. Group III had a spring fixator like group II, but it was unlocked from the start to allow cyclical micromovement as soon as weight-bearing began.
We measured the adenosine triphosphate (ATP) content of callus at various intervals during healing in 78 fractured tibiae in 10- to 12-week-old rabbits. The results, compared with the level in normal tissues, showed a high rate of energy metabolism in the early phase of
Using a simple method of quantifying
Objectives. Small animal models of fracture repair primarily investigate
indirect
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
In patients with traumatic brain injury and fractures
of long bones, it is often clinically observed that the rate of bone
healing and extent of callus formation are increased. However, the
evidence has been unconvincing and an association between such an
injury and enhanced
A variety of surgical methods and strategies have been demonstrated for Andersson lesion (AL) therapy. In 2011, we proposed and identified the feasibility of stabilizing the spine without curettaging the vertebral or discovertebral lesion to cure non-kyphotic AL. Additionally, due to the excellent reunion ability of ankylosing spondylitis, we further came up with minimally invasive spinal surgery (MIS) to avoid the need for both bone graft and lesion curettage in AL surgery. However, there is a paucity of research into the comparison between open spinal fusion (OSF) and early MIS in the treatment of AL. The purpose of this study was to investigate and compare the clinical outcomes and radiological evaluation of our early MIS approach and OSF for AL. A total of 39 patients diagnosed with AL who underwent surgery from January 2004 to December 2022 were retrospectively screened for eligibility. Patients with AL were divided into an MIS group and an OSF group. The primary outcomes were union of the lesion on radiograph and CT, as well as the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores immediately after surgery, and at the follow-up (mean 29 months (standard error (SE) 9)). The secondary outcomes were total blood loss during surgery, operating time, and improvement in the radiological parameters: global and local kyphosis, sagittal vertical axis, sagittal alignment, and chin-brow vertical angle immediately after surgery and at the follow-up.Aims
Methods
Objectives. Secondary
This study was designed to test the hypothesis
that the sensory innervation of bone might play an important role
in sensing and responding to low-intensity pulsed ultrasound and
explain its effect in promoting
With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI). A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Aims
Methods
We have investigated whether assessment of blood flow to the proximal scaphoid can be used to predict nonunion in acute fractures of the scaphoid. We studied 32 fractures of the scaphoid one to two weeks after injury, by dynamic fat-suppressed T1-weighted gradient-echo MRI after the intravenous administration of gadopentetate dimeglumine (0.1 mmol/kg body-weight). Steepest slope values (SSV) and percentage enhancement values (%E) were calculated for the distal and proximal fragments and poles. All the fractures were treated by immobilisation in a cast, and union was assessed by CT at 12 weeks. Nonunion occurred in four fractures (12%), and there was no statistically significant difference between the proximal fragment SSV and %E values for the fractures which united and those with nonunion. The difference between the proximal pole SSV and %E values for the union and nonunion groups reached statistical significance (p <
0.05), but with higher enhancement parameters for the nonunion group. Our results suggest that poor proximal vascularity is not an important determinant of union in fractures of the scaphoid.
The uptake of 99mTc-MDP was studied in 73 patients after a tibial fracture. The image obtained five minutes after injection during a period between one and four weeks after fracture was found to be related to the incidence of non-union after six months. A ratio of 1.3 between the uptake at the fracture site and at normal bone adjacent to it predicted non-union in an individual patient with a sensitivity of about 70% and a specificity of 90%.
In 65 mature Wistar rats a Kirschner wire was introduced into the medullary cavity of each femur. A closed transverse mid-shaft fracture of one femur was produced by a three-point bending technique. Subsequently the mechanical characteristics of the healing fracture, including the torque and angle of twist required to take the callus to its yield point and to ultimate failure, were compared with those for the opposite femur of each rat. Controls were killed in groups at two, three, four, five and seven weeks. Test animals were given bovine growth hormone in a daily dose of five milligrams before being killed in groups at two, three and four weeks. A significant increase in torque index was found in the two-week group of test animals but not in subsequent groups. No evidence was found that growth hormone given alone could produce an overall shortening of the healing time in fresh fractures.
Objectives. The monitoring of
As there is little information on the factors that influence fracture union following intramedullary nailing of the tibia we retrospectively investigated patient-, injury- and treatment-related factors in 161 patients with closed or grade I open fractures of the tibial diaphysis. The patients were reviewed until clinical and radiological evidence of union at a mean of 13.3 months (4 to 60). Multivariate statistical analysis using a Cox proportional hazards model showed that the risk of failure of union increased by 2.38 times for highly comminuted fractures, by 3.14 times when nail dynamisation was applied, and by 1.65 times when the locking screws failed. In fractures with no or only minimal comminution the risk of nonunion increased if the post-reduction gap was ≥ 3 mm.
This 501-patient, multi-centre, randomised controlled trial sought
to establish the effect of low-intensity, pulsed, ultrasound (LIPUS)
on tibial shaft fractures managed with intramedullary nailing. We
conducted an economic evaluation as part of this trial. Data for patients’ use of post-operative healthcare resources
and time taken to return to work were collected and costed using
publicly available sources. Health-related quality of life, assessed
using the Health Utilities Index Mark-3 (HUI-3), was used to derive
quality-adjusted life years (QALYs). Costs and QALYs were compared
between LIPUS and control (a placebo device) from a payer and societal
perspective using non-parametric bootstrapping. All costs are reported
in 2015 Canadian dollars unless otherwise stated.Aims
Patients and Methods
This multicentre prospective clinical trial aimed
to determine whether early administration of alendronate (ALN) delays
fracture healing after surgical treatment of fractures of the distal
radius. The study population comprised 80 patients (four men and
76 women) with a mean age of 70 years (52 to 86) with acute fragility
fractures of the distal radius requiring open reduction and internal
fixation with a volar locking plate and screws. Two groups of 40 patients
each were randomly allocated either to receive once weekly oral
ALN administration (35 mg) within a few days after surgery and continued
for six months, or oral ALN administration delayed until four months
after surgery. Postero-anterior and lateral radiographs of the affected
wrist were taken monthly for six months after surgery. No differences
between groups was observed with regard to gender (p = 1.0), age
(p = 0.916), fracture classification (p = 0.274) or bone mineral
density measured at the spine (p = 0.714). The radiographs were
assessed by three independent assessors. There were no significant
differences in the mean time to complete cortical bridging observed
between the ALN group (3.5 months ( Cite this article:
We analysed the effects of commonly used medications
on human osteoblastic cell activity in vitro, specifically proliferation
and tissue mineralisation. A list of medications was retrieved from
the records of patients aged >
65 years filed in the database of
the largest health maintenance organisation in our country (>
two
million members). Proliferation and mineralisation assays were performed
on the following drugs: rosuvastatin (statin), metformin (antidiabetic),
metoprolol (β-blocker), citalopram (selective serotonin reuptake
inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)).
All tested drugs significantly stimulated DNA synthesis to varying
degrees, with rosuvastatin 5 µg/ml being the most effective among
them (mean 225% ( Cite this article:
To review the systemic impact of smoking on bone healing as evidenced
within the orthopaedic literature. A protocol was established and studies were sourced from five
electronic databases. Screening, data abstraction and quality assessment
was conducted by two review authors. Prospective and retrospective
clinical studies were included. The primary outcome measures were
based on clinical and/or radiological indicators of bone healing.
This review specifically focused on non-spinal orthopaedic studies.Objectives
Methods
For the treatment of ununited fractures, we developed
a system of delivering magnetic labelled mesenchymal stromal cells
(MSCs) using an extracorporeal magnetic device. In this study, we
transplanted ferucarbotran-labelled and luciferase-positive bone
marrow-derived MSCs into a non-healing femoral fracture rat model
in the presence of a magnetic field. The biological fate of the
transplanted MSCs was observed using luciferase-based bioluminescence
imaging and we found that the number of MSC derived photons increased
from day one to day three and thereafter decreased over time. The
magnetic cell delivery system induced the accumulation of photons at
the fracture site, while also retaining higher photon intensity
from day three to week four. Furthermore, radiological and histological
findings suggested improved callus formation and endochondral ossification.
We therefore believe that this delivery system may be a promising
option for bone regeneration.
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
There is no absolute method of evaluating healing
of a fracture of the tibial shaft. In this study we sought to validate a
new clinical method based on the systematic observation of gait,
first by assessing the degree of agreement between three independent
observers regarding the gait score for a given patient, and secondly
by determining how such a score might predict healing of a fracture. We used a method of evaluating gait to assess 33 patients (29
men and four women, with a mean age of 29 years (15 to 62)) who
had sustained an isolated fracture of the tibial shaft and had been
treated with a locked intramedullary nail. There were 15 closed
and 18 open fractures (three Gustilo and Anderson grade I, seven
grade II, seven grade IIIA and one grade IIIB). Assessment was carried
out three and six months post-operatively using videos taken with
a digital camera. Gait was graded on a scale ranging from 1 (extreme
difficulty) to 4 (normal gait). Bivariate analysis included analysis
of variance to determine whether the gait score statistically correlated
with previously validated and standardised scores of clinical status
and radiological evidence of union. An association was found between the pattern of gait and all
the other variables. Improvement in gait was associated with the
absence of pain on weight-bearing, reduced tenderness over the fracture,
a higher Radiographic Union Scale in Tibial Fractures score, and
improved functional status, measured using the Brazilian version
of the Short Musculoskeletal Function Assessment questionnaire (all
p <
0.001). Although further study is needed, the analysis of
gait in this way may prove to be a useful clinical tool.
Aims. The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies. Methods. A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early
Aims. Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and
Aims. Minimally invasive fixation of pelvic fragility fractures is recommended to reduce pain and allow early mobilization. The purpose of this study was to evaluate the outcome of two different stabilization techniques in bilateral fragility fractures of the sacrum (BFFS). Methods. A non-randomized, prospective study was carried out in a level 1 trauma centre. BFFS in 61 patients (mean age 80 years (SD 10); four male, 57 female) were treated surgically with bisegmental transsacral stablization (BTS; n = 41) versus spinopelvic fixation (SP; n = 20). Postoperative full weightbearing was allowed. The outcome was evaluated at two timepoints: discharge from inpatient treatment (TP1; Fitbit tracking, Zebris stance analysis), and ≥ six months (TP2; Fitbit tracking, Zebris analysis, based on modified Oswestry Disability Index (ODI), Majeed Score (MS), and the 12-Item Short Form Survey 12 (SF-12).
Aims. Several previously identified patient-, injury-, and treatment-related factors are associated with the development of nonunion in distal femur fractures. However, the predictive value of these factors is not well defined. We aimed to assess the predictive ability of previously identified risk factors in the development of nonunion leading to secondary surgery in distal femur fractures. Methods. We conducted a retrospective cohort study of adult patients with traumatic distal femur fracture treated with lateral locking plate between 2009 and 2018. The patients who underwent secondary surgery due to
Aims. Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs
Objectives. The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods. A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”. Results. The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired
Aims. The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus. Methods. A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC). Results. Nine of the ten patients achieved union at six months. At six weeks, seven patients had bridging callus of ≥ one cortex on the 3D reconstruction and when present all achieved union. Compared to six-week radiographs, no bridging callus was present in any patient. Of the three patients lacking sonographic bridging callus, one went onto a nonunion (77.8% sensitive and 100% specific to predict union). At 12 weeks, nine patients had bridging callus at ≥ one cortex on 3D reconstruction (100%-sensitive and 100%-specific to predict union). Presence of sonographic bridging callus on 3D reconstruction demonstrated excellent reviewer agreement on ICC at 0.87 (95% confidence interval 0.74 to 0.96). Conclusion. 3D fracture reconstruction can be created using multiple ultrasound images in order to evaluate the presence of bridging callus. This imaging modality has the potential to enhance the usability and accuracy of identification of early
Aims. The aim of this study was to assess the safety and clinical outcome of patients with a femoral shaft fracture and a previous complex post-traumatic femoral malunion who were treated with a clamshell osteotomy and fixation with an intramedullary nail (IMN). Methods. The study involved a retrospective analysis of 23 patients. All had a previous, operatively managed, femoral shaft fracture with malunion due to hardware failure. They were treated with a clamshell osteotomy between May 2015 and March 2020. The mean age was 42.6 years (26 to 62) and 15 (65.2%) were male. The mean follow-up was 2.3 years (1 to 5). Details from their medical records were analyzed. Clinical outcomes were assessed using the quality of correction of the deformity, functional recovery, the healing time of the fracture, and complications. Results. The mean length of time between the initial injury and surgery was 4.5 years (3 to 10). The mean operating time was 2.8 hours (2.05 to 4.4)), and the mean blood loss was 850 ml (650 to 1,020). Complications occurred in five patients (21.7%): two with wound necrosis, and three with deep vein thrombosis. The mean coronal deformity was significantly corrected from 17.78° (SD 4.62°) preoperatively to 1.35° (SD 1.72°) postoperatively (p < 0.001), and the mean sagittal deformity was significantly corrected from 20.65° (SD 5.88°) preoperatively to 1.61° (SD 1.95°; p < 0.001) postoperatively. The mean leg length discrepancy was significantly corrected from 3.57 cm (SD 1.27) preoperatively to 1.13 cm (SD 0.76) postoperatively (p < 0.001). All
Aims. Ankle fracture is one of the most common musculoskeletal injuries sustained in the UK. Many patients experience pain and physical impairment, with the consequences of the fracture and its management lasting for several months or even years. The broad aim of ankle fracture treatment is to maintain the alignment of the joint while the
Aims. To evaluate if union of clavicle fractures can be predicted at six weeks post-injury by the presence of bridging callus on ultrasound. Methods. Adult patients managed nonoperatively with a displaced mid-shaft clavicle were recruited prospectively. Ultrasound evaluation of the fracture was undertaken to determine if sonographic bridging callus was present. Clinical risk factors at six weeks were used to stratify patients at high risk of nonunion with a combination of Quick Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH) ≥ 40, fracture movement on examination, or absence of callus on radiograph. Results. A total of 112 patients completed follow-up at six months with a nonunion incidence of 16.7% (n = 18/112). Sonographic bridging callus was detected in 62.5% (n = 70/112) of the cohort at six weeks post-injury. If present, union occurred in 98.6% of the fractures (n = 69/70). If absent, nonunion developed in 40.5% of cases (n = 17/42). The sensitivity to predict union with sonographic bridging callus at six weeks was 73.4% and the specificity was 94.4%. Regression analysis found that failure to detect sonographic bridging callus at six weeks was associated with older age, female sex, simple fracture pattern, smoking, and greater fracture displacement (Nagelkerke R. 2. = 0.48). Of the cohort, 30.4% (n = 34/112) had absent sonographic bridging callus in addition to one or more of the clinical risk factors at six weeks that predispose to nonunion. If one was present the nonunion rate was 35%, 60% with two, and 100% when combined with all three. Conclusion. Ultrasound combined with clinical risk factors can accurately predict
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of
Aims. Vancouver type B periprosthetic femoral fractures (PFF) are challenging complications after total hip arthroplasty (THA), and some treatment controversies remain. The objectives of this study were: to evaluate the short-to-mid-term clinical outcomes after treatment of Vancouver type B PFF and to compare postoperative outcome in subgroups according to classifications and treatments; to report the clinical outcomes after conservative treatment; and to identify risk factors for postoperative complications in Vancouver type B PFF. Methods. A total of 97 consecutive PPFs (49 males and 48 females) were included with a mean age of 66 years (standard deviation (SD) 14.9). Of these, 86 patients were treated with surgery and 11 were treated conservatively. All living patients had a minimum two-year follow-up. Patient demographics details,
Objectives. Healing in cancellous metaphyseal bone might be different from
midshaft
Objectives. Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male versus female cocultures. Methods. A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion. Results. We found that 96 hours of M1 phenotype in male cocultures allowed for maximum matrix mineralization versus 72 hours in female cocultures. ALP activity and osteocalcin secretion were also enhanced with the addition of IL-4 later in male versus female groups. The sex of the cells had a statistically significant effect on the optimal IL-4 addition time to maximize osteogenesis. Conclusion. These results suggest that: 1) a 72- to 96-hour proinflammatory environment is critical for optimal matrix mineralization; and 2) there are immunological differences in this coculture environment due to sex. Optimizing immunomodulation during
Aims. Current American Academy of Orthopaedic Surgeons (AAOS) guidelines for treating femoral fractures in children aged two to six years recommend early spica casting although some individuals have recommended intramedullary stabilization in this age group. The purpose of this study was to compare the treatment and family burden of care of spica casting and flexible intramedullary nailing in this age group. Methods. Patients aged two to six years old with acute, non-pathological femur fractures were prospectively enrolled at one of three tertiary children’s hospitals. Either early closed reduction with spica cast application or flexible intramedullary nailing was accomplished under general anaesthesia. The treatment method was selected after discussion of the options by the surgeon with the family. Data were prospectively collected on patient demographics, fracture characteristics, complications, pain medication, and union. The Impact on Family Scale was obtained at the six-week follow-up visit. In all, 75 patients were included in the study: 39 in the spica group and 36 in the nailing group. The mean age of the spica group was 2.71 (2.0 to 6.9) years and the mean age of the nailing group was 3.16 (2.0 to 6.9) years. Results. All
Objectives. Electromagnetic fields (EMF) are widely used in musculoskeletal
disorders. There are indications that EMF might also be effective
in the treatment of osteoporosis. To justify clinical follow-up
experiments, we examined the effects of EMF on bone micro-architectural
changes in osteoporotic and healthy rats. Moreover, we tested the
effects of EMF on
Aims. The objective of this study was to investigate bone healing after
internal fixation of displaced femoral neck fractures (FNFs) with
the Dynamic Locking Blade Plate (DLBP) in a young patient population
treated by various orthopaedic (trauma) surgeons. Patients and Methods. We present a multicentre prospective case series with a follow-up
of one year. All patients aged ≤ 60 years with a displaced FNF treated
with the DLBP between 1st August 2010 and December 2014 were included.
Patients with pathological fractures, concomitant fractures of the
lower limb, symptomatic arthritis, local infection or inflammation,
inadequate local tissue coverage, or any mental or neuromuscular
disorder were excluded. Primary outcome measure was failure in fracture
healing due to nonunion, avascular necrosis, or implant failure
requiring revision surgery. Results. In total, 106 consecutive patients (mean age 52 years, range
23 to 60; 46% (49/106) female) were included. The failure rate was
14 of 106 patients (13.2%, 95% confidence interval (CI) 7.1 to 19.9).
Avascular necrosis occurred in 11 patients (10.4%), nonunion in
six (5.6%), and loss of fixation in two (1.9%). Conclusion. The rate of
There is ambiguity surrounding the degree of scaphoid union required to safely allow mobilization following scaphoid waist fracture. Premature mobilization could lead to refracture, but late mobilization may cause stiffness and delay return to normal function. This study aims to explore the risk of refracture at different stages of scaphoid waist fracture union in three common fracture patterns, using a novel finite element method. The most common anatomical variant of the scaphoid was modelled from a CT scan of a healthy hand and wrist using 3D Slicer freeware. This model was uploaded into COMSOL Multiphysics software to enable the application of physiological enhancements. Three common waist fracture patterns were produced following the Russe classification. Each fracture had differing stages of healing, ranging from 10% to 90% partial union, with increments of 10% union assessed. A physiological force of 100 N acting on the distal pole was applied, with the risk of refracture assessed using the Von Mises stress.Aims
Methods
Total hip arthroplasty (THA) is considered the preferred treatment for displaced proximal femoral neck fractures. However, in many countries this option is economically unviable. To improve outcomes in financially disadvantaged populations, we studied the technique of concomitant valgus hip osteotomy and operative fixation (VOOF). This prospective serial study compares two treatment groups: VOOF versus operative fixation alone with cannulated compression screws (CCSs). In the first series, 98 hip fixation procedures were performed using CCS. After fluoroscopic reduction of the fracture, three CCSs were placed. In the second series, 105 VOOF procedures were performed using a closing wedge intertrochanteric osteotomy with a compression lag screw and lateral femoral plate. The alignment goal was to create a modified Pauwel’s fracture angle of 30°. After fluoroscopic reduction of fracture, lag screw was placed to achieve the calculated correction angle, followed by inter-trochanteric osteotomy and placement of barrel plate. Patients were followed for a minimum of two years.Aims
Methods
To evaluate whether low-intensity pulsed ultrasound (LIPUS) accelerates bone healing at osteotomy sites and promotes functional recovery after open-wedge high tibial osteotomy (OWHTO). Overall, 90 patients who underwent OWHTO without bone grafting were enrolled in this nonrandomized retrospective study, and 45 patients treated with LIPUS were compared with 45 patients without LIPUS treatment in terms of bone healing and functional recovery postoperatively. Clinical evaluations, including the pain visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) score, were performed preoperatively as well as six weeks and three, six, and 12 months postoperatively. The progression rate of gap filling was evaluated using anteroposterior radiographs at six weeks and three, six, and 12 months postoperatively.Aims
Methods
The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures. A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively.Aims
Methods
The Unified Classification System (UCS), or Vancouver system, is a validated and widely used classification system to guide the management of periprosthetic femoral fractures. It suggests that well-fixed stems (type B1) can be treated with fixation but that loose stems (types B2 and B3) should be revised. Determining whether a stem is loose can be difficult and some authors have questioned how to apply this classification system to polished taper slip stems which are, by definition, loose within their cement mantle. Recent evidence has challenged the common perception that revision surgery is preferable to fixation surgery for UCS-B periprosthetic fractures around cemented polished taper slip stems. Indications for fixation include an anatomically reducible fracture and cement mantle, a well-fixed femoral bone-cement interface, and a well-functioning acetabular component. However, not all type B fractures can or should be managed with fixation due to the risk of early failure. This annotation details specific fracture patterns that should not be managed with fixation alone. Cite this article:
Objectives. This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in
Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA). A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion.Aims
Methods
The August 2024 Trauma Roundup360 looks at: Does topical vancomycin prevent fracture-related infections in closed fractures undergoing open reduction and internal fixation? A randomized controlled trial; Is postoperative splinting advantageous after upper limb fracture surgery?; Does suprapatellar nailing resolve knee pain?; Locking versus non-locking plate fixation in comminuted talar neck fractures: a biomechanical study using cadaveric specimens; Revolutionizing recovery metrics: PROMIS versus SMFA in orthopaedic trauma care; Dorsal hook plating of patella fractures: reliable fixation and satisfactory outcomes; The impact of obesity on subtrochanteric femur fracture outcomes; Low-dose NSAIDs (ketorolac) and cytokine modulation in orthopaedic polytrauma: a detailed analysis.
Revision total hip arthroplasty in patients with Vancouver type B3 fractures with Paprosky type IIIA, IIIB, and IV femoral defects are difficult to treat. One option for Paprovsky type IIIB and IV defects involves modular cementless, tapered, revision femoral components in conjunction with distal interlocking screws. The aim of this study was to analyze the rate of reoperations and complications and union of the fracture, subsidence of the stem, mortality, and the clinical outcomes in these patients. A total of 46 femoral components in patients with Vancouver B3 fractures (23 with Paprosky type IIIA, 19 with type IIIB, and four with type IV defects) in 46 patients were revised with a transfemoral approach using a modular, tapered, cementless revision Revitan curved femoral component with distal cone-in-cone fixation and prospectively followed for a mean of 48.8 months (SD 23.9; 24 to 112). The mean age of the patients was 80.4 years (66 to 100). Additional distal interlocking was also used in 23 fractures in which distal cone-in-cone fixation in the isthmus was < 3 cm.Aims
Methods
Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone. Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft.Aims
Methods
Aims. To evaluate the hypothesis that failed osteosynthesis of periprosthetic
Vancouver type B1 fractures can be treated successfully with stem
revision using a transfemoral approach and a cementless, modular,
tapered revision stem with reproducible rates of
The June 2024 Trauma Roundup360 looks at: Skin antisepsis before surgical fixation of limb fractures; Comparative analysis of intramedullary nail versus plate fixation for fibula fracture in supination external rotation type IV ankle injury; Early weightbearing versus late weightbearing after intramedullary nailing for distal femoral fracture (AO/OTA 33) in elderly patients: a multicentre propensity-matched study; Long-term outcomes with spinal versus general anaesthesia for hip fracture surgery; Operative versus nonoperative management of unstable medial malleolus fractures: a randomized clinical trial; Impact of smoking status on fracture-related infection characteristics and outcomes; Reassessing empirical antimicrobial choices in fracture-related infections; Development and validation of the Nottingham Trauma Frailty Index (NTFI) for older trauma patients.
Proximal femur fractures treatment can involve anterograde nailing with a single or double cephalic screw. An undesirable failure for this fixation is screw cut-out. In a single-screw nail, a tip-apex distance (TAD) greater than 25 mm has been associated with an increased risk of cut-out. The aim of the study was to examine the role of TAD as a risk factor in a cephalic double-screw nail. A retrospective study was conducted on 112 patients treated for intertrochanteric femur fracture with a double proximal screw nail (Endovis BA2; EBA2) from January to September 2021. The analyzed variables were age, sex, BMI, comorbidities, fracture type, side, time of surgery, quality of reduction, pre-existing therapy with bisphosphonate for osteoporosis, screw placement in two different views, and TAD. The last follow-up was at 12 months. Logistic regression was used to study the potential factors of screw cut-out, and receiver operating characteristic curve to identify the threshold value.Aims
Methods
Isolated fractures of the ulnar diaphysis are uncommon, occurring at a rate of 0.02 to 0.04 per 1,000 cases. Despite their infrequency, these fractures commonly give rise to complications, such as nonunion, limited forearm pronation and supination, restricted elbow range of motion, radioulnar synostosis, and prolonged pain. Treatment options for this injury remain a topic of debate, with limited research available and no consensus on the optimal approach. Therefore, this trial aims to compare clinical, radiological, and functional outcomes of two treatment methods: open reduction and internal fixation (ORIF) versus nonoperative treatment in patients with isolated ulnar diaphyseal fractures. This will be a multicentre, open-label, parallel randomized clinical trial (under National Clinical Trial number NCT01123447), accompanied by a parallel prospective cohort group for patients who meet the inclusion criteria, but decline randomization. Eligible patients will be randomized to one of the two treatment groups: 1) nonoperative treatment with closed reduction and below-elbow casting; or 2) surgical treatment with ORIF utilizing a limited contact dynamic compression plate and screw construct. The primary outcome measured will be the Disabilities of the Arm, Shoulder and Hand questionnaire score at 12 months post-injury. Additionally, functional outcomes will be assessed using the 36-Item Short Form Health Survey and pain visual analogue scale, allowing for a comparison of outcomes between groups. Secondary outcome measures will encompass clinical outcomes such as range of motion and grip strength, radiological parameters including time to union, as well as economic outcomes assessed from enrolment to 12 months post-injury.Aims
Methods
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article:
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.Aims
Methods
Aims. To compare the outcomes for trochanteric fractures treated with
a sliding hip screw (SHS) or a cephalomedullary nail. Patients and Methods. A total of 400 patients with a trochanteric hip fracture were
randomised to receive a SHS or a cephalomedullary nail (Targon PFT).
All surviving patients were followed up to one year from injury.
Functional outcome was assessed by a research nurse blinded to the
implant used. Results. Recovery of mobility, as assessed by a mobility scale, was superior
for those treated with the intramedullary nail compared with the
SHS at eight weeks, three and nine months
(p-values between 0.01 and 0.04), the difference at six and 12 months
was not statistically significant (p = 0.15 and p = 0.18 respectively).
The mean difference was around 0.4 points (0.3 to 0.5) on a nine
point scale. Surgical time for the nail was four minutes less than
that for the SHS (p <
0.001).
This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering interventions for treating distal femur fractures in adults; ultrasound and shockwave therapy for acute fractures in adults; and local corticosteroid injection versus placebo for carpal tunnel syndrome.
Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in
Objectives. Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. Methods. We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay. Results. The expression levels of WW Domain Containing E3 Ubiquitin Protein Ligase 1 (Wwp1), SMAD Specific E3 Ubiquitin Protein Ligase 1 (Smurf1), SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and Itch were all significantly increased in the fracture callus of WT mice, which was associated with elevated expression of NF-κB members and total ubiquitinated proteins. Callus tissue isolated from Itch KO mice expressed higher levels of osteoblast-associated genes, including Runx2, a positive regulator of osteoblast differentiation, but osteoclast-associated genes were not increased. Both NF-κB RelA and RelB proteins were found to bind to the NF-κB binding site in the mouse Itch promoter. Conclusions. Our findings indicate that Itch depletion may have a strong positive effect on osteoblast differentiation in fracture callus. Thus, ubiquitin E3 ligase Itch could be a potential target for enhancing
The August 2024 Oncology Roundup360 looks at: What factors are associated with osteoarthritis after cementation for benign aggressive bone tumour of the knee joint: a systematic review and meta-analysis; Recycled bone grafts treated with extracorporeal irradiation or liquid nitrogen freezing after malignant tumour resection; Intercalary resection of the tibia for primary bone tumours: are vascularized fibula autografts with or without allografts a durable reconstruction?; 3D-printed modular prostheses for the reconstruction of intercalary bone defects after joint-sparing limb salvage surgery for femoral diaphyseal tumours; Factors influencing the outcome of patients with primary Ewing’s sarcoma of the sacrum; The significance of surveillance imaging in children with Ewing’s sarcoma and osteosarcoma; Resection margin and soft-tissue sarcomas of the extremities treated with limb-sparing surgery and postoperative radiotherapy.
The August 2014 Research Roundup. 360 . looks at: Antibiotic loaded ceramic of use in osteomyelitis; fibronectin implicated in cartilage degeneration; Zinc Chloride accelerates
The December 2022 Hip & Pelvis Roundup360 looks at: Fix and replace: simultaneous fracture fixation and hip arthroplasty for acetabular fractures in older patients; Is the revision rate for femoral neck fracture lower for total hip arthroplasty than for hemiarthroplasty?; Femoral periprosthetic fractures: data from the COMPOSE cohort study; Dual-mobility cups and fracture of the femur; What’s the deal with outcomes for hip and knee arthroplasty outcomes internationally?; Osteochondral lesions of the femoral head: is costal cartilage the answer?
The February 2024 Children’s orthopaedics Roundup360 looks at: Hip impingement after in situ pinning causes decreased flexion and forced external rotation in flexion on 3D-CT; Triplane ankle fracture patterns in paediatric patients; Improved forearm rotation even after early conversion to below-elbow; Selective dorsal rhizotomy and cerebral palsy (CP) hip displacement; Abduction bracing following anterior open reduction for developmental dysplasia of the hip does not improve residual dysplasia or reduce secondary surgery; 40% risk of later total hip arthroplasty for in situ slipped capital femoral epiphysis (SCFE) pinning; Does brace treatment following closed reduction of developmental dysplasia of the hip improve acetabular coverage?; Waterproof hip spica casts for paediatric femur fractures.
The localization of necrotic areas has been reported to impact the prognosis and treatment strategy for osteonecrosis of the femoral head (ONFH). Anteroposterior localization of the necrotic area after a femoral neck fracture (FNF) has not been properly investigated. We hypothesize that the change of the weight loading direction on the femoral head due to residual posterior tilt caused by malunited FNF may affect the location of ONFH. We investigate the relationship between the posterior tilt angle (PTA) and anteroposterior localization of osteonecrosis using lateral hip radiographs. Patients aged younger than 55 years diagnosed with ONFH after FNF were retrospectively reviewed. Overall, 65 hips (38 males and 27 females; mean age 32.6 years (SD 12.2)) met the inclusion criteria. Patients with stage 1 or 4 ONFH, as per the Association Research Circulation Osseous classification, were excluded. The ratios of anterior and posterior viable areas and necrotic areas of the femoral head to the articular surface were calculated by setting the femoral head centre as the reference point. The PTA was measured using Palm’s method. The association between the PTA and viable or necrotic areas of the femoral head was assessed using Spearman’s rank correlation analysis (median PTA 6.0° (interquartile range 3 to 11.5)).Aims
Methods