An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical
Arthroplasty has been shown to generate the most waste among all orthopaedic subspecialties, and it is estimated that hip and knee arthroplasty generate in excess of three million kg of waste annually in the UK. Infectious waste generates up to ten times more CO2 compared with recycled waste, and previous studies have shown that over 90% of waste in the infectious stream is misallocated. We assessed the effect of real-time waste segregation by an unscrubbed team member on waste generation in knee and hip arthroplasty cases, and compared this with a simple educational intervention during the ‘team brief’ at the start of the operating list across two sites. Waste was categorized into five categories: infectious, general, recycling, sharps, and linens. Each category was weighed at the end of each case using a digital weighing scale. At Site A (a tertiary orthopaedic hospital), pre-intervention data were collected for 16 total knee arthroplasy (TKA) and 15 total hip arthroplasty (THA) cases. Subsequently, for ten TKA and ten THA cases, an unscrubbed team member actively segregated waste in real-time into the correct streams. At Site B (a district general hospital), both pre- and post-intervention groups included ten TKA and ten THA cases. The intervention included reminding staff during the ‘team brief’ to segregate waste correctly.Aims
Methods
Little is known about the tissue reactions to various implant materials which coincide with an inflammatory reaction. We used the avridine arthritis rat model to evaluate the tissue response in the synovial, interstitial and subcutaneous tissues after implant insertion. Quantitative immunohistochemistry showed that normal joint synovial tissue is dominated by ED2-positive resident macrophages. Polyethylene implants induced a much stronger foreign-body reaction than titanium implants, as measured by the number of interfacial ED1-positive macrophages. The tissue response to titanium and polyethylene was also vastly different in arthritic synovial tissue compared with control tissue. It is likely that these biomaterials interact differently with inflammatory cells or intermediary compounds. It may be that arthritic synovial tissue produces reactive oxygen intermediates (free radicals) with which titanium has a unique anti-inflammatory interaction in vitro.
Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing
Aims. As an increasing number of female surgeons are choosing orthopaedics, it is important to recognize the impact of pregnancy within this cohort. The aim of this review was to examine common themes and data surrounding pregnancy, parenthood, and fertility within orthopaedics. Methods. A systematic review was conducted by searching Medline, Emcare, Embase, PsycINFO, OrthoSearch, and the Cochrane Library in November 2022. The Preferred Reporting Items for Systematic Reviews and Meta Analysis were adhered to. Original research papers that focused on pregnancy and/or parenthood within orthopaedic surgery were included for review. Results. Of 1,205 papers, 19 met the inclusion criteria. Our results found that orthopaedic surgeons have higher reported rates of obstetric complications, congenital abnormalities, and infertility compared to the general population. They were noted to have children at a later age and voluntarily delayed childbearing. Negative perceptions of pregnancy from fellow trainees and programme directors were identified. Conclusion. Female orthopaedic surgeons have high rates of obstetric complications and infertility. Negative perceptions surrounding pregnancy can lead to orthopaedic surgeons voluntarily delaying childbearing. There is a need for a pregnancy-positive culture shift combined with formalized guidelines and female mentorship to create a more supportive
Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion. The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional
Aims. Lower limb fractures are common in low- and middle-income countries (LMICs) and represent a significant burden to the existing orthopaedic surgical infrastructure. In high income country (HIC) settings, internal fixation is the standard of care due to its superior outcomes. In LMICs, external fixation is often the surgical treatment of choice due to limited supplies, cost considerations, and its perceived lower complication rate. The aim of this systematic review protocol is identifying differences in rates of infection, nonunion, and malunion of extra-articular femoral and tibial shaft fractures in LMICs treated with either internal or external fixation. Methods. This systematic review protocol describes a broad search of multiple databases to identify eligible papers. Studies must be published after 2000, include at least five patients, patients must be aged > 16 years or treated as skeletally mature, and the paper must describe a fracture of interest and at least one of our primary outcomes of interest. We did not place restrictions on language or journal. All abstracts and full texts will be screened and extracted by two independent reviewers. Risk of bias and quality of evidence will be analyzed using standardized appraisal tools. A random-effects meta-analysis followed by a subgroup analysis will be performed, given the anticipated heterogeneity among studies, if sufficient data are available. Conclusion. The lack of easily accessible LMIC outcome data, combined with international clinical guidelines that are often developed by HIC surgeons for use in HIC
Aims. Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods. In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs. Results. We categorized the new bone formation into three stages: stage I (early lengthening), in which there was no obvious callus formation on radiographs and ultrasound; stage II (lengthening), in which radiographs showed low-density callus formation with uneven distribution and three sub-stages could be identified on ultrasound: in Ia punctate callus was visible; in IIb there was linear callus formation which was not yet connected and in IIc there was continuous linear callus. In stage III (healing), the bone ends had united, the periosteum was intact, and the callus had disappeared, as confirmed on radiographs, indicating healed bone. A progressive increase in the number of vertical vessels was noted in the early stages, peaking during stages IIb and IIc, followed by a gradual decline (p < 0.001). Delayed healing involved patients with a prolonged stage IIa or those who regressed to stage IIa from stages IIb or IIc during lengthening. Conclusion. We found that the formation of new bone in paediatric patients undergoing limb lengthening could be reliably evaluated using ultrasound when combined with the radiological findings. This combination enabled an improved assessment of the prognosis, and adjustments to the lengthening protocol. While SMI offered additional insights into angiogenesis within the new bone, its role primarily contributed to the understanding of the microvascular
Aims. To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports. Methods. Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data
Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular
Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. Methods. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee. Results. Titanium lattice implants were able to restore the mechanical
Aim. The coronavirus disease 2019 (COVID-19) pandemic presents significant challenges to healthcare systems globally. Orthopaedic surgeons are at risk of contracting COVID-19 due to their close contact with patients in both outpatient and theatre
Aims. As the peak of the COVID-19 pandemic passes, the challenge shifts to safe resumption of routine medical services, including elective orthopaedic surgery. Protocols including pre-operative self-isolation, COVID-19 testing, and surgery at a non-COVID-19 site have been developed to minimize risk of transmission. Despite this, it is likely that many patients will want to delay surgery for fear of contracting COVID-19. The aim of this study is to identify the number of patients who still want to proceed with planned elective orthopaedic surgery in this current
Aims. The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods. IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic
Objectives. Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male versus female cocultures. Methods. A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion. Results. We found that 96 hours of M1 phenotype in male cocultures allowed for maximum matrix mineralization versus 72 hours in female cocultures. ALP activity and osteocalcin secretion were also enhanced with the addition of IL-4 later in male versus female groups. The sex of the cells had a statistically significant effect on the optimal IL-4 addition time to maximize osteogenesis. Conclusion. These results suggest that: 1) a 72- to 96-hour proinflammatory
This article presents a unified clinical theory
that links established facts about the physiology of bone and homeostasis,
with those involved in the healing of fractures and the development
of nonunion. The key to this theory is the concept that the tissue
that forms in and around a fracture should be considered a specific
functional entity. This ‘bone-healing unit’ produces a physiological
response to its biological and mechanical
Aims. Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. Methods. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed. Results. Of the 299 cases reviewed, 279 (93.3%) had acceptable traces throughout and awoke with normal clinical neurological function. No patient with normal traces had a postoperative clinical neurological deficit. True alerts occurred in 20 cases (6.7%). The diagnoses of the alert group included nine cases of adolescent idiopathic scoliosis (AIS) (45%) and six of congenital scoliosis (30%). The incidence of deterioration based on diagnosis was 9/153 (6%) for AIS, 6/30 (20%) for congenital scoliosis, and 2/16 (12.5%) for spinal tuberculosis. Deterioration was much more common in congenital scoliosis than in AIS (p = 0.020). Overall, 65% of alerts occurred during rod instrumentation: 15% occurred during decompression of the internal apex in vertebral column resection surgery. Four alert cases (20%) awoke with clinically detectable neurological compromise. Conclusion. Surgeon-directed TcMEP monitoring has a 100% negative predictive value and allows early identification of physiological cord distress, thereby enabling immediate intervention. In resource constrained
Bone is a dynamic tissue with a quarter of the trabecular and a fifth of the cortical bone being replaced continuously each year in a complex process that continues throughout an individual’s lifetime. Bone has an important role in homeostasis of minerals with non-stoichiometric hydroxyapatite bone mineral forming the inorganic phase of bone. Due to its crystal structure and chemistry, hydroxyapatite (HA) and related apatites have a remarkable ability to bind molecules. This review article describes the accretion of trace elements in bone mineral giving a historical perspective. Implanted HA particles of synthetic origin have proved to be an efficient recruiting moiety for systemically circulating drugs which can locally biomodulate the material and lead to a therapeutic effect. Bone mineral and apatite however also act as a waste dump for trace elements and drugs, which significantly affects the
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding
Aims. Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic
Cell therapies hold significant promise for the treatment of injured or diseased musculoskeletal tissues. However, despite advances in research, there is growing concern about the increasing number of clinical centres around the world that are making unwarranted claims or are performing risky biological procedures. Such providers have been known to recommend, prescribe, or deliver so called ‘stem cell’ preparations without sufficient data to support their true content and efficacy. In this annotation, we outline the current
Aims. The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro
Aims. To evaluate safety outcomes and patient satisfaction of the re-introduction of elective orthopaedic surgery on ‘green’ (non-COVID-19) sites during the COVID-19 pandemic. Methods. A strategy consisting of phased relaxation of clinical comorbidity criteria was developed. Patients from the orthopaedic waiting list were selected according to these criteria and observed recommended preoperative isolation protocols. Surgery was performed at green sites (two local private hospitals) under the COVID-19 NHS contract. The first 100 consecutive patients that met the Phase 1 criteria and underwent surgery were included. In hospital and postoperative complications with specific enquiry as to development of COVID-19 symptoms or need and outcome for COVID-19 testing at 14 days and six weeks was recorded. Patient satisfaction was surveyed at 14 days postoperatively. Results. There were 54 females and 46 males (mean age 44 years, mean body mass index (BMI) 25.6 kg/m. 2. ). In all, 56 patients underwent major orthopaedic procedures. There were no exclusions. One patient had a postoperative positive SARS-CoV-2 RT-PCR test but had no typical symptoms of COVID-19 infection and no clinical sequelae. 99% of patients were satisfied with the process and 98% would recommend undergoing elective orthopaedic surgery in the study period. Conclusion. In an
Aims. Perthes’ disease is a condition which leads to necrosis of the femoral head. It is most commonly reported in children aged four to nine years, with recent statistics suggesting it affects around five per 100,000 children in the UK. Current treatment for the condition aims to maintain the best possible
Aims. Despite the COVID-19 pandemic, incidence of hip fracture has not changed. Evidence has shown increased mortality rates associated with COVID-19 infection. However, little is known about the outcomes of COVID-19 negative patients in a pandemic
Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular
Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the
Aims. Healthcare systems have been rapidly restructured to meet COVID-19 demand. Clinicians are working to novel clinical guidelines, treating new patient cohorts and working in unfamiliar
The use of journal clubs and, more recently,
case-based discussions in order to stimulate debate among orthopaedic
surgeons lies at the heart of orthopaedic training and education. A
virtual learning
The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against We performed in vitro growth and viability assays to determine the capability of Aims
Methods
Aims. Prosthetic joint infection (PJI) remains a serious complication that is associated with high morbidity and costs. The aim of this study was to prepare a systematic review to examine patient-related and perioperative risk factors that can be modified in an attempt to reduce the rate of PJI. Materials and Methods. A search of PubMed and MEDLINE was conducted for articles published between January 1990 and February 2018 with a combination of search terms to identify studies that dealt with modifiable risk factors for reducing the rate of PJI. An evidence-based review was performed on 12 specific risk factors: glycaemic control, obesity, malnutrition, smoking, vitamin D levels, preoperative Staphylococcus aureus screening, the management of anti-rheumatic medication, perioperative antibiotic prophylaxis, presurgical skin preparation, the operating room
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical
Aims. The aims of this study were to compare the mean duration of antibiotic release and the mean zone of inhibition between vancomycin-loaded porous tantalum cylinders and antibiotic-loaded bone cement at intervals, and to evaluate potential intrinsic antimicrobial properties of tantalum in an in vitro medium
To evaluate if, for orthopaedic trainees, additional cadaveric simulation training or standard training alone yields superior radiological and clinical outcomes in patients undergoing dynamic hip screw (DHS) fixation or hemiarthroplasty for hip fracture. This was a preliminary, pragmatic, multicentre, parallel group randomized controlled trial in nine secondary and tertiary NHS hospitals in England. Researchers were blinded to group allocation. Overall, 40 trainees in the West Midlands were eligible: 33 agreed to take part and were randomized, five withdrew after randomization, 13 were allocated cadaveric training, and 15 were allocated standard training. The intervention was an additional two-day cadaveric simulation course. The control group received standard on-the-job training. Primary outcome was implant position on the postoperative radiograph: tip-apex distance (mm) (DHS) and leg length discrepancy (mm) (hemiarthroplasty). Secondary clinical outcomes were procedure time, length of hospital stay, acute postoperative complication rate, and 12-month mortality. Procedure-specific secondary outcomes were intraoperative radiation dose (for DHS) and postoperative blood transfusion requirement (hemiarthroplasty).Aims
Methods
The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise. Cite this article:
Mendelian randomization (MR) is considered to overcome the bias of observational studies, but there is no current meta-analysis of MR studies on rheumatoid arthritis (RA). The purpose of this study was to summarize the relationship between potential pathogenic factors and RA risk based on existing MR studies. PubMed, Web of Science, and Embase were searched for MR studies on influencing factors in relation to RA up to October 2022. Meta-analyses of MR studies assessing correlations between various potential pathogenic factors and RA were conducted. Random-effect and fixed-effect models were used to synthesize the odds ratios of various pathogenic factors and RA. The quality of the study was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines.Aims
Methods
Cite this article:
Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance. We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs.Aims
Methods
Aims. We hypothesized that the wide-awake local anaesthesia with no tourniquet (WALANT) technique is cost-effective, easy to use, safe, and reproducible, with a low learning curve towards mastery, having a high patient satisfaction rate. Furthermore, WALANT would be a suitable alternative for the austere and developing nation
The aim of this study was to explore clinicians’ experience of a paediatric randomized controlled trial (RCT) comparing surgical reduction with non-surgical casting for displaced distal radius fractures. Overall, 22 staff from 15 hospitals who participated in the RCT took part in an interview. Interviews were informed by phenomenology and analyzed using thematic analysis.Aims
Methods
Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies.Aims
Methods
Aims. Inflammatory response plays a pivotal role in the pathophysiological process of intervertebral disc degeneration (IDD). A20 (also known as tumour necrosis factor alpha-induced protein 3 (TNFAIP3)) is a ubiquitin-editing enzyme that restricts nuclear factor-kappa B (NF-κB) signalling. A20 prevents the occurrence of multiple inflammatory diseases. However, the role of A20 in the initiation of IDD has not been elucidated. The aim of the study was to investigate the effect of A20 in senescence of TNF alpha (TNF-α)-induced nucleus pulposus cells (NPCs). Methods. Immunohistochemical staining was performed to observe the expression of A20 in normal and degenerated human intervertebral discs. The NPCs were dissected from the tail vertebrae of healthy male Sprague-Dawley rats and were cultured in the incubator. In the experiment, TNF-α was used to mimic the inflammatory
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article:
An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise. A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.Aims
Methods
Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry.Aims
Methods
The April 2023 Hip & Pelvis Roundup360 looks at: Do technical errors determine outcomes of operatively managed femoral neck fractures in younger adults?; Single-stage or two-stage revision for hip prosthetic joint infection (INFORM); Fixation better than revision in type B periprosthetic fractures of taper slip stems; Can you maximize femoral head size at the expense of liner thickness?; Plasma D-dimer for periprosthetic joint infection?; How important is in vivo oxidation?; Total hip arthroplasty for HIV patients with osteonecrosis.
Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment.Aims
Methods
Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting. Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with Aims
Methods
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap.Aims
Methods
CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.Aims
Methods
We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach. We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography.Aims
Methods
Aims. Distal radial fractures are the most common fracture sustained by the adult population. Most can be treated using cast immobilization without the need for surgery. The aim of this study was to assess the feasibility of a definitive trial comparing the commonly used fibreglass cast immobilization with an alternative product called Woodcast. Woodcast is a biodegradable casting material with theoretical benefits in terms of patient comfort as well as benefits to the
The aims of this study were to describe the demographic, socioeconomic, and educational factors associated with core surgical trainees (CSTs) who apply to and receive offers for higher surgical training (ST3) posts in Trauma & Orthopaedics (T&O). Data collected by the UK Medical Education Database (UKMED) between 1 January 2014 and 31 December 2019 were used in this retrospective longitudinal cohort study comprising 1,960 CSTs eligible for ST3. The primary outcome measures were whether CSTs applied for a T&O ST3 post and if they were subsequently offered a post. A directed acyclic graph was used for detecting confounders and adjusting logistic regression models to calculate odds ratios (ORs), which assessed the association between the primary outcomes and relevant exposures of interest, including: age, sex, ethnicity, parental socioeconomic status (SES), domiciliary status, category of medical school, Situational Judgement Test (SJT) scores at medical school, and success in postgraduate examinations. This study followed STROBE guidelines.Aims
Methods
Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects. We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.Aims
Methods
Cite this article:
The December 2024 Hip & Pelvis Roundup360 looks at: Total hip arthroplasty after femoral neck fractures versus osteoarthritis at one-year follow-up: a comparative, retrospective study; Excellent mid-term survival of a monoblock conical prosthesis in treating atypical and complex femoral anatomy with total hip arthroplasty; Hip arthroscopy for femoroacetabular impingement improves sexual function; Fast-track hip arthroplasty does not increase complication rates; Ten-year experience with same-day discharge outpatient total hip arthroplasty: patient demographics changed, but safe outcomes were maintained.
As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee. Cite this article:
The use of cementless total knee arthroplasty (TKA) components has increased during the past decade. The initial design of cementless metal-backed patellar components had shown high failure rates due to many factors. The aim of this study was to evaluate the clinical results of a second-generation cementless, metal-backed patellar component of a modern design. This was a retrospective review of 707 primary TKAs in 590 patients from a single institution, using a cementless, metal-backed patellar component with a mean follow-up of 6.9 years (2 to 12). A total of 409 TKAs were performed in 338 females and 298 TKAs in 252 males. The mean age of the patients was 63 years (34 to 87) and their mean BMI was 34.3 kg/m2 (18.8 to 64.5). The patients were chosen to undergo a cementless procedure based on age and preoperative radiological and intraoperative bone quality. Outcome was assessed using the Knee Society knee and function scores and range of motion (ROM), complications, and revisions.Aims
Methods
The April 2023 Children’s orthopaedics Roundup360 looks at: CT scan of the ipsilateral femoral neck in paediatric shaft fractures; Meniscal injuries in skeletally immature children with tibial eminence fractures: a systematic literature review; Post-maturity progression in adolescent idiopathic scoliosis curves of 40° to 50°; Prospective, randomized Ponseti treatment for clubfoot: orthopaedic surgeons versus physical therapists; FIFA 11+ Kids: challenges in implementing a prevention programme; The management of developmental dysplasia of the hip in children aged under three months: a consensus study from the British Society for Children's Orthopaedic Surgery; Early investigation and bracing in developmental dysplasia of the hip impacts maternal wellbeing and breastfeeding; Hip arthrodesis in children: a review of 26 cases with a mean of 20 years’ follow-up
The critical relationship between airborne microbiological contamination in an operating theatre and surgical site infection (SSI) is well known. The aim of this annotation is to explain the scientific basis of using settle plates to audit the quality of air, and to provide information about the practicalities of using them for the purposes of clinical audit. The microbiological quality of the air in most guidance is defined by volumetric sampling, but this method is difficult for surgical departments to use on a routine basis. Settle plate sampling, which mimics the mechanism of deposition of airborne microbes onto open wounds and sterile instruments, is a good alternative method of assessing the quality of the air. Current practice is not to sample the air in an operating theatre during surgery, but to rely on testing the engineering systems which deliver the clean air. This is, however, not good practice and microbiological testing should be carried out routinely during operations as part of clinical audit. Cite this article:
Obtaining solid implant fixation is crucial in revision total knee arthroplasty (rTKA) to avoid aseptic loosening, a major reason for re-revision. This study aims to validate a novel grading system that quantifies implant fixation across three anatomical zones (epiphysis, metaphysis, diaphysis). Based on pre-, intra-, and postoperative assessments, the novel grading system allocates a quantitative score (0, 0.5, or 1 point) for the quality of fixation achieved in each anatomical zone. The criteria used by the algorithm to assign the score include the bone quality, the size of the bone defect, and the type of fixation used. A consecutive cohort of 245 patients undergoing rTKA from 2012 to 2018 were evaluated using the current novel scoring system and followed prospectively. In addition, 100 first-time revision cases were assessed radiologically from the original cohort and graded by three observers to evaluate the intra- and inter-rater reliability of the novel radiological grading system.Aims
Methods
Objectives. Osteoporosis is a metabolic disease resulting in progressive loss of bone mass as measured by bone mineral density (BMD). Physical exercise has a positive effect on increasing or maintaining BMD in postmenopausal women. The contribution of exercise to the regulation of osteogenesis in osteoblasts remains unclear. We therefore investigated the effect of exercise on osteoblasts in ovariectomized mice. Methods. We compared the activity of differentially expressed genes of osteoblasts in ovariectomized mice that undertook exercise (OVX+T) with those that did not (OVX), using microarray and bioinformatics. Results. Many inflammatory pathways were significantly downregulated in the osteoblasts after exercise. Meanwhile, IBSP and SLc13A5 gene expressions were upregulated in the OVX+T group. Furthermore, in in vitro assay, IBSP and SLc13A5 mRNAs were also upregulated during the osteogenic differentiation of MC3T3-E1 and 7F2 cells. Conclusion. These findings suggest that exercise may not only reduce the inflammatory
For the increasing number of working-age patients undergoing total hip or total knee arthroplasty (THA/TKA), return to work (RTW) after surgery is crucial. We investigated the association between occupational class and time to RTW after THA or TKA. Data from the prospective multicentre Longitudinal Leiden Orthopaedics Outcomes of Osteoarthritis Study were used. Questionnaires were completed preoperatively and six and 12 months postoperatively. Time to RTW was defined as days from surgery until RTW (full or partial). Occupational class was preoperatively assessed and categorized into four categories according to the International Standard Classification of Occupations 2008 (blue-/white-collar, high-/low-skilled). Cox regression analyses were conducted separately for THA and TKA patients. Low-skilled blue-collar work was used as the reference category.Aims
Methods
The evidence base within trauma and orthopaedics has traditionally favoured quantitative research methodologies. Qualitative research can provide unique insights which illuminate patient experiences and perceptions of care. Qualitative methods reveal the subjective narratives of patients that are not captured by quantitative data, providing a more comprehensive understanding of patient-centred care. The aim of this study is to quantify the level of qualitative research within the orthopaedic literature. A bibliometric search of journals’ online archives and multiple databases was undertaken in March 2024, to identify articles using qualitative research methods in the top 12 trauma and orthopaedic journals based on the 2023 impact factor and SCImago rating. The bibliometric search was conducted and reported in accordance with the preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO).Aims
Methods
Several previously identified patient-, injury-, and treatment-related factors are associated with the development of nonunion in distal femur fractures. However, the predictive value of these factors is not well defined. We aimed to assess the predictive ability of previously identified risk factors in the development of nonunion leading to secondary surgery in distal femur fractures. We conducted a retrospective cohort study of adult patients with traumatic distal femur fracture treated with lateral locking plate between 2009 and 2018. The patients who underwent secondary surgery due to fracture healing problem or plate failure were considered having nonunion. Background knowledge of risk factors of distal femur fracture nonunion based on previous literature was used to form an initial set of variables. A logistic regression model was used with previously identified patient- and injury-related variables (age, sex, BMI, diabetes, smoking, periprosthetic fracture, open fracture, trauma energy, fracture zone length, fracture comminution, medial side comminution) in the first analysis and with treatment-related variables (different surgeon-controlled factors, e.g. plate length, screw placement, and proximal fixation) in the second analysis to predict the nonunion leading to secondary surgery in distal femur fractures.Aims
Methods
The aim of this study was to determine the clinical outcomes and factors contributing to failure of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, for advanced osteoarthritis secondary to hip dysplasia. We reviewed patients with Tönnis grade 2 osteoarthritis secondary to hip dysplasia who underwent TOA between November 1998 and December 2019. Patient demographic details, osteotomy-related complications, and the modified Harris Hip Score (mHHS) were obtained via medical notes review. Radiological indicators of hip dysplasia were assessed using preoperative and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan-Meier product-limited method. A multivariate Cox proportional hazards model was used to identify predictors of failure.Aims
Methods
This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture. Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.Aims
Methods
The aim of the present study was to assess the outcomes of the induced membrane technique (IMT) for the management of infected segmental bone defects, and to analyze predictive factors associated with unfavourable outcomes. Between May 2012 and December 2020, 203 patients with infected segmental bone defects treated with the IMT were enrolled. The digital medical records of these patients were retrospectively analyzed. Factors associated with unfavourable outcomes were identified through logistic regression analysis.Aims
Methods
It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.Aims
Methods
This study aimed to gather insights from elbow experts using the Delphi method to evaluate the influence of patient characteristics and fracture morphology on the choice between operative and nonoperative treatment for coronoid fractures. A three-round electronic (e-)modified Delphi survey study was performed between March and December 2023. A total of 55 elbow surgeons from Asia, Australia, Europe, and North America participated, with 48 completing all questionnaires (87%). The panellists evaluated the factors identified as important in literature for treatment decision-making, using a Likert scale ranging from "strongly influences me to recommend nonoperative treatment" (1) to "strongly influences me to recommend operative treatment" (5). Factors achieving Likert scores ≤ 2.0 or ≥ 4.0 were deemed influential for treatment recommendation. Stable consensus is defined as an agreement of ≥ 80% in the second and third rounds.Aims
Methods
Although there are various pelvic osteotomies for acetabular dysplasia of the hip, shelf operations offer effective and minimally invasive osteotomy. Our study aimed to assess outcomes following modified Spitzy shelf acetabuloplasty. Between November 2000 and December 2016, we retrospectively evaluated 144 consecutive hip procedures in 122 patients a minimum of five years after undergoing modified Spitzy shelf acetabuloplasty for acetabular dysplasia including osteoarthritis (OA). Our follow-up rate was 92%. The mean age at time of surgery was 37 years (13 to 58), with a mean follow-up of 11 years (5 to 21). Advanced OA (Tönnis grade ≥ 2) was present preoperatively in 16 hips (11%). The preoperative lateral centre-edge angle ranged from -28° to 25°. Survival was determined by Kaplan-Meier analysis, using conversions to total hip arthroplasty as the endpoint. Risk factors for joint space narrowing less than 2 mm were analyzed using a Cox proportional hazards model.Aims
Methods
To systematically review qualitative studies of patients with distal tibia or ankle fracture, and explore their experience of injury and recovery. We undertook a systematic review of qualitative studies. Five databases were searched from inception to 1 February 2022. All titles and abstracts were screened, and a subset were independently assessed. Methodological quality was appraised using the Critical Appraisal Skills Programme (CASP) checklist. The GRADE-CERQual checklist was used to assign confidence ratings. Thematic synthesis was used to analyze data with the identification of codes which were drawn together to form subthemes and then themes.Aims
Methods
Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis. The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Aims
Methods
Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR). Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically.Aims
Methods
Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant ( In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage.Aims
Methods
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods
The aim of this study was to determine the effectiveness of home-based prehabilitation on pre- and postoperative outcomes in participants awaiting total knee (TKA) and hip arthroplasty (THA). A systematic review with meta-analysis of randomized controlled trials (RCTs) of prehabilitation interventions for TKA and THA. MEDLINE, CINAHL, ProQuest, PubMed, Cochrane Library, and Google Scholar databases were searched from inception to October 2022. Evidence was assessed by the PEDro scale and the Cochrane risk-of-bias (ROB2) tool.Aims
Methods
To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Aims
Methods
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
The aim of this study was to compare the cost-effectiveness of surgical fixation with Kirschner (K-)wire ersus moulded casting after manipulation of a fracture of the distal radius in an operating theatre setting. An economic evaluation was conducted based on data collected from the Distal Radius Acute Fracture Fixation Trial 2 (DRAFFT2) multicentre randomized controlled trial in the UK. Resource use was collected at three, six, and 12 months post-randomization using trial case report forms and participant-completed questionnaires. Cost-effectiveness was reported in terms of incremental cost per quality-adjusted life year (QALY) gained from an NHS and personal social services perspective. Sensitivity analyses were conducted to examine the robustness of cost-effectiveness estimates, and decision uncertainty was handled using confidence ellipses and cost-effectiveness acceptability curves.Aims
Methods
Cite this article:
The October 2024 Arthroplasty Roundup360 looks at: Breaking the mould: female representation in arthroplasty surgery remains low, with elbow leading the way; Post COVID-19: where are we with the 'catch up' in England and Wales?; Prevalence and clinical impact of sarcopenia in patients undergoing total joint replacement: a systematic review and a meta-analysis; Total joint replacement and sleep: the state of the evidence.
Cite this article:
The anterior cruciate ligament (ACL) is frequently injured in elite athletes, with females up to eight times more likely to suffer an ACL tear than males. Biomechanical and hormonal factors have been thoroughly investigated; however, there remain unknown factors that need investigation. The mechanism of injury differs between males and females, and anatomical differences contribute significantly to the increased risk in females. Hormonal factors, both endogenous and exogenous, play a role in ACL laxity and may modify the risk of injury. However, data are still limited, and research involving oral contraceptives is potentially associated with methodological and ethical problems. Such characteristics can also influence the outcome after ACL reconstruction, with higher failure rates in females linked to a smaller diameter of the graft, especially in athletes aged < 21 years. The addition of a lateral extra-articular tenodesis can improve the outcomes after ACL reconstruction and reduce the risk of failure, and it should be routinely considered in young elite athletes. Sex-specific environmental differences can also contribute to the increased risk of injury, with more limited access to and availablility of advanced training facilities for female athletes. In addition, football kits are designed for male players, and increased attention should be focused on improving the quality of pitches, as female leagues usually play the day after male leagues. The kit, including boots, the length of studs, and the footballs themselves, should be tailored to the needs and body shapes of female athletes. Specific physiotherapy programmes and training protocols have yielded remarkable results in reducing the risk of injury, and these should be extended to school-age athletes. Finally, psychological factors should not be overlooked, with females’ greater fear of re-injury and lack of confidence in their knee compromising their return to sport after ACL injury. Both intrinsic and extrinsic factors should be recognized and addressed to optimize the training programmes which are designed to prevent injury, and improve our understanding of these injuries. Cite this article:
The April 2023 Research Roundup360 looks at: Ear protection for orthopaedic surgeons?; Has arthroscopic meniscectomy use changed in response to the evidence?; Time to positivity of cultures obtained for periprosthetic joint infection; Bisphosphonates for post-COVID-19 osteonecrosis of the femoral head; Missing missed fractures: is AI the answer?; Congenital insensitivity to pain and correction of the knee; YouTube and paediatric elbow injuries.
Musculoskeletal diseases are having a growing impact worldwide. It is therefore crucial to have an evidence base to most effectively and efficiently implement future health services across different healthcare systems. International trials are an opportunity to address these challenges and have many potential benefits. They are, however, complex to set up and deliver, which may impact on the efficient and timely delivery of a project. There are a number of models of how international trials are currently being delivered across a range of orthopaedic patient populations, which are discussed here. The examples given highlight that the key to overcoming these challenges is the development of trusted and equal partnerships with collaborators in each country. International trials have the potential to address a global burden of disease, and in turn optimize the benefit to patients in the collaborating countries and those with similar health services and care systems. Cite this article: