The glenopolar angle assesses the rotational
alignment of the glenoid and may provide prognostic information
and aid the management of scapula fractures. We have analysed the
effect of the anteroposterior (AP) shoulder radiograph rotational
offset on the glenopolar angle in a laboratory setting and used
this to assess the accuracy of shoulder imaging employed in routine
clinical practice. Fluoroscopic imaging was performed on 25 non-paired scapulae
tagged with 2 mm steel spheres to determine the orientation of true
AP views. The glenopolar angle was measured on all the bony specimens
rotated at 10° increments. The mean glenopolar angle measured on
the bone specimens in rotations between 0° and 20° and thereafter
was found to be significantly different (p <
0.001). We also obtained
the AP radiographs of the uninjured shoulder of 30 patients treated
for fractures at our centre and found that none fitted the criteria
of a true AP shoulder radiograph. The mean angular offset from the
true AP view was 38° (10° to 65°) for this cohort. Radiological
AP shoulder views may not fully project the normal anatomy of the scapular
body and the measured glenopolar angle. The absence of a true AP
view may compromise the clinical management of a scapular fracture. Cite this article:
The April 2013 Children’s orthopaedics Roundup360 looks at: improving stress distribution in dysplastic hips; the dangers of fashion; the natural history of supracondylar fractures; ankles that perform well as knees; intra-articular hip pathology at osteotomy; the safe removal of flexible nails; supracondylar fracture fixation; and talipes.
The October 2012 Oncology Roundup360 looks at: the causes of primary bone tumours; adjuvant chemotherapy in the longer term; vascularised fibular grafts to salvage massive femoral allografts; a new look at old risks; reconstruction with excised irradiated bone; predicting chemosensitivity in osteosarcoma ; and chemotherapy, osteoporosis and the risk of fracture.
Elastic stable intramedullary nailing (ESIN)
is generally acknowledged to be the treatment of choice for displaced diaphyseal
femoral fractures in children over the age of three years, although
complication rates of up to 50% are described. Pre-bending the nails
is recommended, but there are no published data to support this.
Using synthetic bones and a standardised simulated fracture, we
performed biomechanical testing to determine the influence on the
stability of the fracture of pre-bending the nails before implantation.
Standard ESIN was performed on 24 synthetic femoral models with
a spiral fracture. In eight cases the nails were inserted without
any pre-bending, in a further eight cases they were pre-bent to
30° and in the last group of eight cases they were pre-bent to 60°. Mechanical
testing revealed that pre-bending to 60° produced a significant
increase in the stiffness or stability of the fracture. Pre-bending
to 60° showed a significant positive influence on the stiffness
compared with unbent nails. Pre-bending to 30° improved stiffness
only slightly. These findings validate the recommendations for pre-bending,
but the degree of pre-bend should exceed 30°. Adopting higher degrees
of pre-bending should improve stability in spiral fractures and
reduce the complications of varus deformity and shortening.
We present our experience with a double-mobility
acetabular component in 155 consecutive revision total hip replacements
in 149 patients undertaken between 2005 and 2009, with particular
emphasis on the incidence of further dislocation. The mean age of
the patients was 77 years (42 to 89) with 59 males and 90 females.
In all, five patients died and seven were lost to follow-up. Indications
for revision were aseptic loosening in 113 hips, recurrent instability
in 29, peri-prosthetic fracture in 11 and sepsis in two. The mean
follow-up was 42 months (18 to 68). Three hips (2%) in three patients
dislocated within six weeks of surgery; one of these dislocated
again after one year. All three were managed successfully with closed
reduction. Two of the three dislocations occurred in patients who
had undergone revision for recurrent dislocation. All three were
found at revision to have abductor deficiency. There were no dislocations
in those revised for either aseptic loosening or sepsis. These results demonstrate a good mid-term outcome for this component.
In the 29 patients revised for instability, only two had a further
dislocation, both of which were managed by closed reduction.
Cadaveric models of the shoulder evaluate discrete motion segments
using the glenohumeral joint in isolation over a defined trajectory.
The aim of this study was to design, manufacture and validate a
robotic system to accurately create three-dimensional movement of
the upper body and capture it using high-speed motion cameras. In particular, we intended to use the robotic system to simulate
the normal throwing motion in an intact cadaver. The robotic system
consists of a lower frame (to move the torso) and an upper frame
(to move an arm) using seven actuators. The actuators accurately
reproduced planned trajectories. The marker setup used for motion
capture was able to determine the six degrees of freedom of all
involved joints during the planned motion of the end effector.Objectives
Methods
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods
Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair. Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient ( When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthoris of the tibia and NF1.
Increasing follow-up identifies the outcome in younger patients who have undergone total hip replacement (THR) and reveals the true potential for survival of the prosthesis. We identified 28 patients (39 THRs) who had undergone cemented Charnley low friction arthroplasty between 1969 and 2001. Their mean age at operation was 17.9 years (12 to 19) and the maximum follow-up was 34 years. Two patients (4 THRs) were lost to follow-up, 13 (16 THRs) were revised at a mean period of 19.1 years (8 to 34) and 13 (19 THRs) continue to attend regular follow-up at a mean of 12.6 years (2.3 to 29). In this surviving group one acetabular component was radiologically loose and all femoral components were secure. In all the patients the diameter of the femoral head was 22.225 mm with Charnley femoral components used in 29 hips and C-stem femoral components in ten. In young patients who require THR the acetabular bone stock is generally a limiting factor for the size of the component. Excellent long-term results can be obtained with a cemented polyethylene acetabular component and a femoral head of small diameter.
We prospectively evaluated the long-term outcome of 158 consecutive patients who underwent revision total hip replacement using uncemented computer-assisted design-computer-assisted manufacture femoral components. There were 97 men and 61 women. Their mean age was 63.1 years (34.6 to 85.9). The mean follow-up was 10.8 years (10 to 12). The mean Oxford, Harris and Western Ontario and McMaster hip scores improved from 41.1, 44.2 and 52.4 pre-operatively to 18.2, 89.3 and 12.3, respectively (p <
0.0001, for each). Six patients required further surgery. The overall survival of the femoral component was 97% (95% confidence interval 94.5 to 99.7). These results are comparable to those of previously published reports for revision total hip replacement using either cemented or uncemented components.
Orthopaedic surgeons use a variety of instruments to help correct, treat, and heal bone disease. The development of these instruments mirrors the history of orthopaedic surgery. The history of bonesetting, the treatment and replacement of joints, and of those who performed these techniques, appears to originate deep in antiquity. Changing ideas within medicine and surgery over the last 200 years have shaped the discovery and evolution of orthopaedic instruments and of the bonesetters themselves. Advances have led to the use of computers as instruments in the navigational guidance of arthroplasty surgery, the use of robotics, the development of cordless drills and improvements in the design of blades to cut bone. Yet some of the old instruments remain; plaster of Paris bandages, the Thomas Splint, Liston’s bonecutter, Gigli’s saw, bone nibblers and Macewan’s osteotomes are still in use. This paper presents a historical review of bonesetters and examines how orthopaedic instruments have evolved from antiquity to the 21st century.
We describe the results of cemented total hip replacement in 23 patients (23 hips) with active tuberculous arthritis of the hip with a mean follow-up of 4.7 years (4 to 7). In two patients the diagnosis was proved by pre-operative biopsy, whereas all others were diagnosed on a clinicoradiological basis with confirmation obtained by histopathological examination and polymerase chain reaction of tissue samples taken at the time of surgery. All patients received chemotherapy for at least three months before surgery and treatment was continued for a total of 18 months. Post-operative dislocation occurred in one patient and was managed successfully by closed reduction. No reactivation of the infection or loosening of the implant was recorded and function of the hip improved in all patients. Total hip replacement in the presence of active tuberculous arthritis of the hip is a safe procedure when pre-operative chemotherapy is commenced and continued for an extended period after operation.
We studied the effect of trochanteric osteotomy in 192 total hip replacements in 140 patients with congenital hip disease. There was bony union in 158 hips (82%), fibrous union in 29 (15%) and nonunion in five (3%). The rate of union had a statistically significant relationship with the position of reattachment of the trochanter, which depended greatly on the pre-operative diagnosis. The pre-operative Trendelenburg gait substantially improved in all three disease types (dysplasia, low and high dislocation) and all four categories of reattachment position. A persistent Trendelenburg gait post-operatively was noticed mostly in patients with defective union (fibrous or nonunion). Acetabular and femoral loosening had a statistically significant relationship with defective union and the position of reattachment of the trochanter. These results suggest that the complications of trochanteric osteotomy in total hip replacement for patients with congenital hip disease are less important than the benefits of this surgical approach.
This was a safety study where the hypothesis was that the newer-design CPCS femoral stem would demonstrate similar early clinical results and micromovement to the well-established Exeter stem. Both are collarless, tapered, polished cemented stems, the only difference being a slight lateral to medial taper with the CPCS stem. A total of 34 patients were enrolled in a single-blinded randomised controlled trial in which 17 patients received a dedicated radiostereometric CPCS stem and 17 a radiostereometric Exeter stem. No difference was found in any of the outcome measures pre-operatively or post-operatively between groups. At two years, the mean subsidence for the CPCS stem was nearly half that seen for the Exeter stem (0.77 mm (−0.943 to 1.77) and 1.25 mm (0.719 to 1.625), respectively; p = 0.032). In contrast, the mean internal rotation of the CPCS stem was approximately twice that of the Exeter (1.61° (−1.07° to 4.33°) and 0.59° (0.97° to 1.64°), respectively; p = 0.048). Other migration patterns were not significantly different between the stems. The subtle differences in designs may explain the different patterns of migration. Comparable migration with the Exeter stem suggests that the CPCS design will perform well in the long term.
The design of the Charnley total hip replacement follows the principle of low frictional torque. It is based on the largest possible difference between the radius of the femoral head and that of the outer aspect of the acetabular component. The aim is to protect the bone-cement interface by movement taking place at the smaller radius, the articulation. This is achieved in clinical practice by a 22.225 mm diameter head articulating with a 40 mm or 43 mm diameter acetabular component of ultra-high molecular weight polyethylene. We compared the incidence of aseptic loosening of acetabular components with an outer diameter of 40 mm and 43 mm at comparable depths of penetration with a mean follow-up of 17 years (1 to 40). In cases with no measurable wear none of the acetabular components were loose. With increasing acetabular penetration there was an increased incidence of aseptic loosening which reflected the difference in the external radii, with 1.5% at 1 mm, 8.8% at 2 mm, 9.7% at 3 mm and 9.6% at 4 mm of penetration in favour of the larger 43 mm acetabular component. Our findings support the Charnley principle of low frictional torque. The level of the benefit is in keeping with the predicted values.
We report serum metal ion level data in patients with unilateral and bilateral hip resurfacing over a ten-year period. In these patients there is an increase in both cobalt and chromium levels above the accepted reference ranges during the first 18 months after operation. Metal ion levels remain elevated, but decline slowly for up to five years. However, the levels then appear to start rising again in some patients up to the ten-year mark. There was no significant difference in cobalt or chromium levels between men and women. These findings appear to differ from much of the current literature. The clinical significance of a raised metal ion level remains under investigation.
Digital radiography is becoming widespread. Accurate pre-operative templating of digital images of the hip traditionally involves positioning a calibration object at its centre. This can be difficult and cause embarrassment. We have devised a method whereby a planar disc placed on the radiographic cassette accounts for the expected magnification. Initial examination of 50 pelvic CT scans showed a mean hip centre distance of 117 mm (79 to 142) above the gluteal skin. Further calculations predicted that a disc of 37.17 mm diameter, placed on the cassette, would appear identical to a 30 mm sphere placed at the level of the centre of the hip as requested by our templating software. We assessed accuracy and reproducibility by ‘reverse calibration’ of 20 radiographs taken three months after hip replacement using simultaneous sphere and disc methods, and a further 20 with a precision disc of accurate size. Even when variations in patient size were ignored, the disc proved more accurate and reliable than the sphere. The technique is reliable, robust, cost effective and acceptable to patients and radiographers. It can easily be used in any radiography department after a few simple calculations and manufacture of appropriately-sized discs.
We undertook a retrospective study of 50 consecutive patients (41 male, 9 female) with an infected nonunion and bone defect of the femoral shaft who had been treated by radical debridement and distraction osteogenesis. Their mean age was 29.9 years (9 to 58) and they had a mean of 3.8 (2 to 19) previous operations. They were followed for a mean of 5.9 years (2.0 to 19.0). The mean duration of the distraction osteogenesis was 24.5 months (2 to 39). Pin-track infection was observed in all patients. The range of knee movement was reduced and there was a mean residual leg-length discrepancy of 1.9 cm (0 to 8) after treatment. One patient required hip disarticulation to manage intractable sepsis. In all, 13 patients had persistant pain. Bony union was achieved in 49 patients at a mean of 20.7 months (12 to 35). Although distraction osteogenesis is commonly used for the treatment of infected femoral nonunion with bone defects, it is associated with a high rate of complications.
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases.
Between 1988 and 1998 we implanted 318 total hip replacements (THRs) in 287 patients using the Plasmacup (B. Braun Ltd, Sheffield, United Kingdom) and a conventional metal-on-polyethylene articulation. The main indications for THR were primary or secondary osteoarthritis. At follow-up after a mean 11.6 years (7.6 to 18.4) 17 patients had died and 20 could not be traced leaving a final series of 280 THRs in 250 patients. There were 62 revisions (22.1%) in 59 patients. A total of 43 acetabular shells (15.4%) had been revised and 13 (4.6%) had undergone exchange of the liner. The most frequent indications for revision were osteolysis and aseptic loosening, followed by polyethylene wear. The mean Kaplan-Meier survival of the Plasmacup was 91% at ten years and 58% at 14 years. Osteolysis was found around 36 (17.1%) of the 211 surviving shells. The median annual rate of linear wear in the surviving shells was 0.12 mm/year and 0.25 mm/year in those which had been revised (p <
0.001). Polyethylene wear was a strong independent risk factor for osteolysis and aseptic loosening. The percentage of patients with osteolysis increased proportionately with each quintile of wear-rate. There is a high late rate of failure of the Plasmacup. Patients with the combination of this prosthesis and bearing should be closely monitored after ten years.