Advertisement for orthosearch.org.uk
Results 161 - 180 of 1653
Results per page:
Bone & Joint Research
Vol. 7, Issue 6 | Pages 397 - 405
1 Jun 2018
Morcos MW Al-Jallad H Li J Farquharson C Millán JL Hamdy RC Murshed M

Objectives. Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice. Methods. Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1. -/-. mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests. Results. The μCT and radiographic analyses revealed a mild reduction of bone volume in Phospho1. -/-. callus, although it was not statistically significant. An increase in trabecular number and a decrease in trabecular thickness and separation were observed in Phospho1. -/-. callus in comparison with the WT callus. Histomorphometric analyses showed that there was a marked increase of osteoid volume over bone volume in the Phospho1. -/-. callus. The three-point bending test showed that Phospho1. -/-. fractured bone had more of an elastic characteristic than the WT bone. Conclusion. Our work suggests that PHOSPHO1 plays an integral role during bone fracture repair and may be a therapeutic target to improve the fracture healing process. Cite this article: M. W. Morcos, H. Al-Jallad, J. Li, C. Farquharson, J. L. Millán, R. C. Hamdy, M. Murshed. PHOSPHO1 is essential for normal bone fracture healing: An Animal Study. Bone Joint Res 2018;7:397–405. DOI: 10.1302/2046-3758.76.BJR-2017-0140.R2




The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 38 - 44
1 Jun 2021
DeMik DE Carender CN Glass NA Brown TS Callaghan JJ Bedard NA

Aims. The purpose of this study was to assess total knee arthroplasty (TKA) volume and rates of early complications in morbidly obese patients over the last decade, where the introduction of quality models influencing perioperative care pathways occurred. Methods. Patients undergoing TKA between 2011 to 2018 were identified in the American College of Surgeons National Surgical Quality Improvement Program database. Patients were stratified by BMI < 40 kg/m. 2. and ≥ 40 kg/m. 2. and evaluated by the number of cases per year. The 30-day rates of any complication, wound complications, readmissions, and reoperation were assessed. Trends in these endpoints over the study period were compared between groups using odds ratios (ORs) and multivariate analyses. Results. In total, 314,695 patients underwent TKA and 46,362 (15%) had BMI ≥ 40 kg/m. 2. The prevalence of morbid obesity among TKA patients did not change greatly, ranging between 14% and 16%. Reoperation rate decreased from 1.16% to 0.96% (odds ratio (OR) 0.81 (95% confidence interval (CI) 0.66 to 0.99)) for patients with BMI < 40 kg/m. 2. , as did rates of readmission (4.46% to 2.87%; OR 0.61 (0.55 to 0.69)). Patients with BMI ≥ 40 kg/m. 2. also had fewer readmissions over the study period (4.87% to 3.34%; OR 0.64 (0.49 to 0.83)); however, the rate of reoperation did not change (1.37% to 1.41%; OR 0.99 (0.62 to 1.56)). Significant improvements were not observed for infective complications over time for either group; patients with BMI ≥ 40 kg/m. 2. had increased risk of both deep infection and wound complications compared to non-morbidly obese patients. Rate of any complication decreased for all patients. Conclusion. The proportion of TKAs in morbidly obese patients has not significantly changed over the past decade. Although readmission rates improved for all patients, reductions in reoperation in non-morbidly obese patients were not experienced by the morbidly obese, resulting in a widening of the complication gap between these cohorts. Care improvements have not lowered the differential risk of infective complications in the morbidly obese. Cite this article: Bone Joint J 2021;103-B(6 Supple A):38–44


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1093 - 1099
1 Sep 2019
Bradley KE Ryan SP Penrose CT Grant SA Wellman SS Attarian DE Green CL Risoli T Bolognesi MP

Aims. Antifibrinolytic agents, including tranexamic acid (TXA) and epsilon-aminocaproic acid (EACA), have been shown to be safe and effective for decreasing perioperative blood loss and transfusion following total hip arthroplasty (THA) and total knee arthroplasty (TKA). However, there are few prospective studies that directly compare these agents. The purpose of this study was to compare the benefits of intraoperative intravenous TXA with EACA. Patients and Methods. A total of 235 patients (90 THA and 145 TKA) were enrolled in this prospective, randomized controlled trial at a single tertiary-care referral centre. In the THA cohort, 53.3% of the patients were female with a median age of 59.8 years (interquartile range (IQR) 53.3 to 68.1). In the TKA cohort, 63.4% of the patients were female with a median age of 65.1 years (IQR 59.4 to 69.5). Patients received either TXA (n = 119) or EACA (n = 116) in two doses intraoperatively. The primary outcome measures included change in haemoglobin level and blood volume, postoperative drainage, and rate of transfusion. Secondary outcome measures included postoperative complications, cost, and length of stay (LOS). Results. TKA patients who received EACA had greater drainage (median 320 ml (IQR 185 to 420) vs 158 ml (IQR 110 to 238); p < 0.001), increased loss of blood volume (891 ml (IQR 612 to 1203) vs 661 ml (IQR 514 to 980); p = 0.014), and increased haemoglobin change from the preoperative level (2.1 ml (IQR 1.7 to 2.8) vs 1.9 ml (IQR 1.2 to 2.4); p = 0.016) compared with patients who received TXA. For the THA cohort, no statistically significant differences were observed in any haematological outcome measure. One patient in the EACA group required transfusion. No patient in the TXA group required transfusion. There were no statistically significant differences in number or type of postoperative complications or LOS for either THA or TKA patients regardless of whether they received TXA or EACA. Conclusion. For hip and knee arthroplasty procedures, EACA is associated with increased perioperative blood loss compared with TXA. However, there is no significant difference in transfusion rate. While further prospective studies are needed to compare the efficacy of each agent, we currently recommend orthopaedic surgeons to select their antifibrinolytic based on cost and regional availability. Cite this article: Bone Joint J 2019;101-B:1093–1099


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 391 - 397
1 Feb 2021
Houdek MT Wunder JS Abdel MP Griffin AM Hevesi M Rose PS Ferguson PC Lewallen DG

Aims. Hip reconstruction after resection of a periacetabular chondrosarcoma is complex and associated with a high rate of complications. Previous reports have compared no reconstruction with historical techniques that are no longer used. The aim of this study was to compare the results of tantalum acetabular reconstruction to both historical techniques and no reconstruction. Methods. We reviewed 66 patients (45 males and 21 females) with a mean age of 53 years (24 to 81) who had undergone acetabular resection for chondrosarcoma. A total of 36 patients (54%) underwent acetabular reconstruction, most commonly with a saddle prosthesis (n = 13; 36%) or a tantalum total hip arthroplasty (THA) (n = 10; 28%). Mean follow-up was nine years (SD 4). Results. There was no difference in the mean age (p = 0.63), sex (p = 0.110), tumour volume (p = 0.646), or type of resection carried out (p > 0.05) between patients with and without reconstruction. Of the original 66 patients, 61 (92%) were ambulant at final follow-up. There was no difference in the proportion of patients who could walk in the reconstruction and 'no reconstruction' groups (p = 0.649). There was no difference in the mean Musculoskeletal Tumor Society (MSTS) score between patients who were reconstructed and those who were not (61% vs 56%; p = 0.378). Patients with a tantalum THA had a significantly (p = 0.015) higher mean MSTS score (78%) than those who were reconstructed with a saddle prosthesis (47%) or who had not been reconstructed (56%). Patients who had undergone reconstruction were more likely to have complications (81% vs 53%; p = 0.033). Conclusion. Reconstruction after resection of the acetabulum is technically demanding. In selected cases, reconstruction is of benefit, especially when reconstruction is by tantalum THA; however, the follow-up for these patients remains mid-term. When not feasible, patients with no reconstruction have an acceptable functional outcome. Level of Evidence: Level III Therapeutic. Cite this article: Bone Joint J 2021;103-B(2):391–397



The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 264 - 270
1 Feb 2021
Nilsen SM Asheim A Carlsen F Anthun KS Johnsen LG Vatten LJ Bjørngaard JH

Aims. Few studies have investigated potential consequences of strained surgical resources. The aim of this cohort study was to assess whether a high proportion of concurrent acute surgical admissions, tying up hospital surgical capacity, may lead to delayed surgery and affect mortality for hip fracture patients. Methods. This study investigated time to surgery and 60-day post-admission death of patients 70 years and older admitted for acute hip fracture surgery in Norway between 2008 and 2016. The proportion of hospital capacity being occupied by newly admitted surgical patients was used as the exposure. Hip fracture patients admitted during periods of high proportion of recent admissions were compared with hip fracture patients admitted at the same hospital during the same month, on similar weekdays, and times of the day with fewer admissions. Results. Among 60,072 patients, mean age was 84.6 years (SD 6.8), 78% were females, and median time to surgery was 20 hours (IQR 11 to 29). Overall, 14% (8,464) were dead 60 days after admission. A high (75. th. percentile) proportion of recent surgical admission compared to a low (25. th. percentile) proportion resulted in 20% longer time to surgery (95% confidence interval (CI) 16 to 25) and 20% higher 60-day mortality (hazard ratio 1.2, 95% CI 1.1 to 1.4). Conclusion. A high volume of recently admitted acute surgical patients, indicating probable competition for surgical resources, was associated with delayed surgery and increased 60-day mortality. Cite this article: Bone Joint J 2021;103-B(2):264–270


Bone & Joint Research
Vol. 7, Issue 10 | Pages 570 - 579
1 Oct 2018
Kallala R Harris WE Ibrahim M Dipane M McPherson E

Aims. Calcium sulphate has traditionally been used as a filler of dead space arising during surgery. Various complications have been described following the use of Stimulan bio-absorbable calcium sulphate beads. This study is a prospective observational study to assess the safety profile of these beads when used in revision arthroplasty, comparing the complication rates with those reported in the literature. Methods. A total of 755 patients who underwent 456 revision total knee arthroplasties (TKA) and 299 revision total hip arthroplasties (THA), with a mean follow-up of 35 months (0 to 78) were included in the study. Results. A total of 32 patients (4.2%) had wound drainage, and this was higher with higher bead volumes and in McPherson grade C patients. There was also a significantly higher bead volume in the 41 patients who developed hypercalcaemia, two of which were symptomatic (p < 0.0001). A total of 13 patients (1.7%) had heterotopic ossification (HO). There was no statistically significant relationship between the development of HO and bead volume (p > 0.05). Conclusion. The strength of this study lies in the large number of patients and the detailed data collection, making it the most comprehensive report available in the literature on the use of calcium sulphate-based bone substitutes. Cite this article: R. Kallala, W. Edwin Harris, M. Ibrahim, M. Dipane, E. McPherson. Use of Stimulan absorbable calcium sulphate beads in revision lower limb arthroplasty: Safety profile and complication rates. Bone Joint Res 2018;7:570–579. DOI: 10.1302/2046-3758.710.BJR-2017-0319.R1


Bone & Joint Research
Vol. 6, Issue 10 | Pages 602 - 609
1 Oct 2017
Jin A Cobb J Hansen U Bhattacharya R Reinhard C Vo N Atwood R Li J Karunaratne A Wiles C Abel R

Objectives. Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results. BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm. 2. vs 6.55/cm. 2. vs 5.25/cm. 2. ). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion. BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1151 - 1157
14 Sep 2020
Levack AE McLawhorn AS Dodwell E DelPizzo K Nguyen J Sink E

Aims. Tranexamic acid (TXA) has been shown to reduce blood loss and transfusion requirements in patients undergoing orthopaedic surgery. There remains a lack of prospective evidence for the use of TXA in patients undergoing periacetabular osteotomy (PAO). The purpose of this study was to determine if intravenous (IV) TXA is effective in reducing calculated blood loss and transfusions after PAO. Methods. This was a single-centre prospective double-blind placebo-controlled randomized trial of 81 patients aged 12 to 45 years undergoing elective PAO by a single surgeon. The intervention group (n = 40) received two doses of IV TXA of a maximum 1 g in each dose; the control group (n = 41) received two doses of 50 ml 0.9% saline IV. The primary outcome was perioperative calculated blood loss. Secondary outcomes included allogenic transfusions and six-week postoperative complications. Results. There were no differences in demographics or intraoperative variables between study groups. The TXA group demonstrated lower mean calculated blood loss (1,265 ml, (SD 321) vs 1,515 ml, (SD 394); p = 0.002) and lower frequency of allogenic transfusion (10%/n = 4 vs 37%/n = 15; p = 0.008). Regression analyses associated TXA use with significant reductions in calculated blood loss (p < 0.001) and transfusion (p = 0.007) after adjusting for age, sex, body mass index, preoperative haemoglobin, cell-saver volume, intraoperative mean arterial blood pressure, and operating time. No patients suffered venous thromboembolic complications. Conclusion. In this trial, IV TXA decreased postoperative calculated blood loss by 293 ml and reduced the frequency of allogenic transfusions by 73% (37% vs 10%) following PAO. TXA may be safe and effective for reducing blood loss in patients undergoing PAO. Cite this article: Bone Joint J 2020;102-B(9):1151–1157


Bone & Joint Research
Vol. 9, Issue 8 | Pages 524 - 530
1 Aug 2020
Li S Mao Y Zhou F Yang H Shi Q Meng B

Osteoporosis (OP) is a chronic metabolic bone disease characterized by the decrease of bone tissue per unit volume under the combined action of genetic and environmental factors, which leads to the decrease of bone strength, makes the bone brittle, and raises the possibility of bone fracture. However, the exact mechanism that determines the progression of OP remains to be underlined. There are hundreds of trillions of symbiotic bacteria living in the human gut, which have a mutually beneficial symbiotic relationship with the human body that helps to maintain human health. With the development of modern high-throughput sequencing (HTS) platforms, there has been growing evidence that the gut microbiome may play an important role in the programming of bone metabolism. In the present review, we discuss the potential mechanisms of the gut microbiome in the development of OP, such as alterations of bone metabolism, bone mineral absorption, and immune regulation. The potential of gut microbiome-targeted strategies in the prevention and treatment of OP was also evaluated. Cite this article: Bone Joint Res 2020;9(8):524–530


Bone & Joint Research
Vol. 9, Issue 5 | Pages 219 - 224
1 May 2020
Yang B Fang X Cai Y Yu Z Li W Zhang C Huang Z Zhang W

Aims. Preoperative diagnosis is important for revision surgery after prosthetic joint infection (PJI). The purpose of our study was to determine whether reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which is used to detect bacterial ribosomal RNA (rRNA) preoperatively, can reveal PJI in low volumes of aspirated fluid. Methods. We acquired joint fluid samples (JFSs) by preoperative aspiration from patients who were suspected of having a PJI and failed arthroplasty; patients with preoperative JFS volumes less than 5 ml were enrolled. RNA-based polymerase chain reaction (PCR) and bacterial culture were performed, and diagnostic efficiency was compared between the two methods.According to established Musculoskeletal Infection Society (MSIS) criteria, 21 of the 33 included patients were diagnosed with PJI. Results. RNA-based PCR exhibited 57.1% sensitivity, 91.7% specificity, 69.7% accuracy, 92.3% positive predictive value, and 55.0% negative predictive value. The corresponding values for culture were 28.6%, 83.3%, 48.5%, 75.0%, and 40.0%, respectively. A significantly higher sensitivity was thus obtained with the PCR method versus the culture method. Conclusion. In situations in which only a small JFS volume can be acquired, RNA-based PCR analysis increases the utility of preoperative puncture for patients who require revision surgery due to suspected PJI. Cite this article:Bone Joint Res. 2020;9(5):219–224


Bone & Joint Open
Vol. 1, Issue 6 | Pages 182 - 189
2 Jun 2020
Scott CEH Holland G Powell-Bowns MFR Brennan CM Gillespie M Mackenzie SP Clement ND Amin AK White TO Duckworth AD

Aims. This study aims to define the epidemiology of trauma presenting to a single centre providing all orthopaedic trauma care for a population of ∼ 900,000 over the first 40 days of the COVID-19 pandemic compared to that presenting over the same period one year earlier. The secondary aim was to compare this with population mobility data obtained from Google. Methods. A cross-sectional study of consecutive adult (> 13 years) patients with musculoskeletal trauma referred as either in-patients or out-patients over a 40-day period beginning on 5 March 2020, the date of the first reported UK COVID-19 death, was performed. This time period encompassed social distancing measures. This group was compared to a group of patients referred over the same calendar period in 2019 and to publicly available mobility data from Google. Results. Orthopaedic trauma referrals reduced by 42% (1,056 compared to 1,820) during the study period, and by 58% (405 compared to 967) following national lockdown. Outpatient referrals reduced by 44%, and inpatient referrals by 36%, and the number of surgeries performed by 36%. The regional incidence of traumatic injury fell from 5.07 (95% confidence interval (CI) 4.79 to 5.35) to 2.94 (95% CI 2.52 to 3.32) per 100,000 population per day. Significant reductions were seen in injuries related to sports and alcohol consumption. No admissions occurred relating to major trauma (Injury Severity Score > 16) or violence against the person. Changes in population mobility and trauma volume from baseline correlated significantly (Pearson’s correlation 0.749, 95% CI 0.58 to 0.85, p < 0.001). However, admissions related to fragility fractures remained unchanged compared to the 2019 baseline. Conclusion. The profound changes in social behaviour and mobility during the early stages of the COVID-19 pandemic have directly correlated with a significant decrease in orthopaedic trauma referrals, but fragility fractures remained unaffected and provision for these patients should be maintained. Cite this article: Bone Joint Open 2020;1-6:182–189


Bone & Joint Research
Vol. 6, Issue 1 | Pages 22 - 30
1 Jan 2017
Scott CEH Eaton MJ Nutton RW Wade FA Evans SL Pankaj P

Objectives. Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). Materials and Methods. A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Results. Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R. 2. = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R. 2. = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. Conclusion. AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection. Cite this article: C. E. H. Scott, M. J. Eaton, R. W. Nutton, F. A. Wade, S. L. Evans, P. Pankaj. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model. Bone Joint Res 2017;6:22–30. DOI:10.1302/2046-3758.61.BJR-2016-0142.R1


Bone & Joint Research
Vol. 7, Issue 2 | Pages 179 - 186
1 Feb 2018
Wu T Zhang J Wang B Sun Y Liu Y Li G

Objectives. As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing. Materials and Methods. Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses. Results. While SEC2 was found to have no effect on rat MSCs proliferation, it promoted the osteoblast differentiation of rat MSCs. In the rat femoral fracture model, the local administration of SEC2 accelerated fracture healing by increasing fracture callus volumes, bone volume over total volume (BV/TV), and biomechanical recovery. The SEC2 treatment group has superior histological appearance compared with the control group. Conclusion. These data suggest that local administration of SEC2 may be a novel therapeutic approach to enhancing bone repair such as fracture healing. Cite this article: T. Wu, J. Zhang, B. Wang, Y. Sun, Y. Liu, G. Li. Staphylococcal enterotoxin C2 promotes osteogenesis of mesenchymal stem cells and accelerates fracture healing. Bone Joint Res 2018;7:179–186. DOI: 10.1302/2046-3758.72.BJR-2017-0229.R1


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 485 - 494
1 Apr 2020
Gu A Malahias M Selemon NA Wei C Gerhard EF Cohen JS Fassihi SC Stake S Bernstein SL Chen AZ Sculco TP Cross MB Liu J Ast MP Sculco PK

Aims. The aim of this study was to determine the impact of the severity of anaemia on postoperative complications following total hip arthroplasty (THA) and total knee arthroplasty (TKA). Methods. A retrospective cohort study was conducted using the American College of Surgeons National Quality Improvement Program (ACS-NSQIP) database. All patients who underwent primary TKA or THA between January 2012 and December 2017 were identified and stratified based upon hematocrit level. In this analysis, we defined anaemia as packed cell volume (Hct) < 36% for women and < 39% for men, and further stratified anaemia as mild anaemia (Hct 33% to 36% for women, Hct 33% to 39% for men), and moderate to severe (Hct < 33% for both men and women). Univariate and multivariate analyses were used to evaluate the incidence of multiple adverse events within 30 days of arthroplasty. Results. Following adjustment, patients in the THA cohort with moderate to severe anaemia had an increased odds of 6.194 (95% confidence interval (CI) 5.679 to 6.756; p < 0.001) for developing any postoperative complication. Following adjustment, patients in the TKA cohort with moderate to severe anaemia had an increased odds of 5.186 (95% CI 4.811 to 5.590; p < 0.001) for developing any postoperative complication. Among both cohorts, as severity increased, there was an increased risk of postoperative complications. Conclusion. Preoperative anaemia is a risk factor for complications following primary arthroplasty. There is a significant relationship between the severity of anaemia and the odds of postoperative complications. Patients who had moderate to severe anaemia were at increased risk of developing postoperative complications relative to patients with mild anaemia. When considering elective primary THA or TKA in a moderately or severely anaemic patient, surgeons should strongly consider correcting anaemia prior to surgery if possible. Cite this article: Bone Joint J 2020;102-B(4):485–494



The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 273 - 279
1 Feb 2007
Chuter GSJ Cloke DJ Mahomed A Partington PF Green SM

There are many methods for analysing wear volume in failed polyethylene acetabular components. We compared a radiological technique with three recognised ex vivo methods of measurement. We tested 18 ultra-high-molecular-weight polyethylene acetabular components revised for wear and aseptic loosening, of which 13 had pre-revision radiographs, from which the wear volume was calculated based upon the linear wear. We used a shadowgraph technique on silicone casts of all of the retrievals and a coordinate measuring method on the components directly. For these techniques, the wear vector was calculated for each component and the wear volume extrapolated using mathematical equations. The volumetric wear was also measured directly using a fluid-displacement method. The results of each technique were compared. The series had high wear volumes (mean 1385 mm. 3. ; 730 to 1850) and high wear rates (mean 205 mm. 3. /year; 92 to 363). There were wide variations in the measurements of wear volume between the radiological and the other techniques. Radiograph-derived wear volume correlated poorly with that of the fluid-displacement method, co-ordinate measuring method and shadowgraph methods, becoming less accurate as the wear increased. The mean overestimation in radiological wear volume was 47.7% of the fluid-displacement method wear volume. Fluid-displacement method, coordinate measuring method and shadowgraph determinations of wear volume were all better than that of the radiograph-derived linear measurements since they took into account the direction of wear. However, only radiological techniques can be used in vivo and remain useful for monitoring linear wear in the clinical setting. Interpretation of radiological measurements of acetabular wear must be done judiciously in the clinical setting. In vitro laboratory techniques, in particular the fluid-displacement method, remain the most accurate and reliable methods of assessing the wear of acetabular polyethylene