Unstable bicondylar tibial plateau fractures
are rare and there is little guidance in the literature as to the
best form of treatment. We examined the short- to medium-term outcome
of this injury in a consecutive series of patients presenting to
two trauma centres. Between December 2005 and May 2010, a total
of 55 fractures in 54 patients were treated by fixation, 34 with
peri-articular locking plates and 21 with limited access direct
internal fixation in combination with circular external fixation
using a Taylor Spatial Frame (TSF). At a minimum of one year post-operatively,
patient-reported outcome measures including the WOMAC index and
SF-36 scores showed functional deficits, although there was no significant
difference between the two forms of treatment. Despite low outcome scores,
patients were generally satisfied with the outcome. We achieved
good clinical and radiological outcomes, with low rates of complication.
In total, only three patients (5%) had collapse of the joint of
>
4 mm, and metaphysis to diaphysis angulation of greater than 5º,
and five patients (9%) with displacement of >
4 mm. All patients
in our study went on to achieve full union. This study highlights the serious nature of this injury and generally
poor patient-reported outcome measures following surgery, despite
treatment by experienced surgeons using modern surgical techniques.
Our findings suggest that treatment of complex bicondylar tibial
plateau fractures with either a locking plate or a TSF gives similar
clinical and radiological outcomes. Cite this article:
The main object of this study was to use a geometric morphometric
approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of
intact tali. Two important geometric parameters, volume and surface
area, were quantified for left and right talus bones. The geometric
shape variations between the right and left talus bones were also
measured using deviation analysis. Furthermore, location of asymmetry
in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical
in nature, and the difference between the surface area of the left
and right talus bones was less than 7.5%. Similarly, the difference
in the volume of both bones was less than 7.5%. Results of the three-dimensional
(3D) deviation analyses demonstrated the mean deviation between
left and right talus bones were in the range of -0.74 mm to 0.62
mm. It was observed that in eight of 11 subjects, the deviation
in symmetry occurred in regions that are clinically less important
during talus surgery. Objective
Methods
Results
Using human cadaver specimens, we investigated
the role of supplementary fibular plating in the treatment of distal
tibial fractures using an intramedullary nail. Fibular plating is
thought to improve stability in these situations, but has been reported
to have increased soft-tissue complications and to impair union
of the fracture. We proposed that multidirectional locking screws
provide adequate stability, making additional fibular plating unnecessary.
A distal tibiofibular osteotomy model performed on matched fresh-frozen
lower limb specimens was stabilised with reamed nails using conventional
biplanar distal locking (CDL) or multidirectional distal locking
(MDL) options with and without fibular plating. Rotational stiffness
was assessed under a constant axial force of 150 N and a superimposed
torque of ± 5 Nm. Total movement, and neutral zone and fracture
gap movement were analysed. In the CDL group, fibular plating improved stiffness at the tibial
fracture site, albeit to a small degree (p = 0.013). In the MDL
group additional fibular plating did not increase the stiffness.
The MDL nail without fibular plating was significantly more stable
than the CDL nail with an additional fibular plate (p = 0.008). These findings suggest that additional fibular plating does not
improve stability if a multidirectional distal locking intramedullary
nail is used, and is therefore unnecessary if not needed to aid
reduction. Cite this article:
This review considers the surgical treatment
of displaced fractures involving the knee in elderly, osteoporotic patients.
The goals of treatment include pain control, early mobilisation,
avoidance of complications and minimising the need for further surgery.
Open reduction and internal fixation (ORIF) frequently results in
loss of reduction, which can result in post-traumatic arthritis
and the occasional conversion to total knee replacement (TKR). TKR
after failed internal fixation is challenging, with modest functional
outcomes and high complication rates. TKR undertaken as treatment
of the initial fracture has better results to late TKR, but does
not match the outcome of primary TKR without complications. Given
the relatively infrequent need for late TKR following failed fixation,
ORIF is the preferred management for most cases. Early TKR can be
considered for those patients with pre-existing arthritis, bicondylar
femoral fractures, those who would be unable to comply with weight-bearing restrictions,
or where a single definitive procedure is required.
The December 2013 Trauma Roundup360 looks at: Re-operation for intertrochanteric hip fractures; Are twin incisions better than one round the acetabulum?; Salvage osteotomy for calcaneal fractures; Posterior dislocation; Should MRSA be covered in open fractures?; Characterising the saline load test; Has it healed: hip fractures under the spotlight; and stem cells present in atrophic non-union.
Elastic stable intramedullary nailing (ESIN)
is generally acknowledged to be the treatment of choice for displaced diaphyseal
femoral fractures in children over the age of three years, although
complication rates of up to 50% are described. Pre-bending the nails
is recommended, but there are no published data to support this.
Using synthetic bones and a standardised simulated fracture, we
performed biomechanical testing to determine the influence on the
stability of the fracture of pre-bending the nails before implantation.
Standard ESIN was performed on 24 synthetic femoral models with
a spiral fracture. In eight cases the nails were inserted without
any pre-bending, in a further eight cases they were pre-bent to
30° and in the last group of eight cases they were pre-bent to 60°. Mechanical
testing revealed that pre-bending to 60° produced a significant
increase in the stiffness or stability of the fracture. Pre-bending
to 60° showed a significant positive influence on the stiffness
compared with unbent nails. Pre-bending to 30° improved stiffness
only slightly. These findings validate the recommendations for pre-bending,
but the degree of pre-bend should exceed 30°. Adopting higher degrees
of pre-bending should improve stability in spiral fractures and
reduce the complications of varus deformity and shortening.
Most fractures of the radial head are stable
undisplaced or minimally displaced partial fractures without an associated
fracture of the elbow or forearm or ligament injury, where stiffness
following non-operative management is the primary concern. Displaced
unstable fractures of the radial head are usually associated with other
fractures or ligament injuries, and restoration of radiocapitellar
contact by reconstruction or prosthetic replacement of the fractured
head is necessary to prevent subluxation or dislocation of the elbow
and forearm. In fractures with three or fewer fragments (two articular
fragments and the neck) and little or no metaphyseal comminution,
open reduction and internal fixation may give good results. However,
fragmented unstable fractures of the radial head are prone to early
failure of fixation and nonunion when fixed. Excision of the radial
head is associated with good long-term results, but in patients
with instability of the elbow or forearm, prosthetic replacement
is preferred. This review considers the characteristics of stable and unstable
fractures of the radial head, as well as discussing the debatable
aspects of management, in light of the current best evidence. Cite this article:
The August 2013 Trauma Roundup360 looks at: reverse oblique fractures do better with a cephalomedullary device; locking screws confer no advantage in tibial plateau fractures; it’s all about the radius of curvature; radius of curvature revisited; radial head replacement in complex elbow reconstruction; stem cells in early fracture haematoma; heterotrophic ossification in forearms; and Boston in perspective.
The August 2014 Foot &
Ankle Roundup360 looks at: calcaneotibial nail in ankle fractures; reamer irrigator aspirator for ankle fusion; periprosthetic bone infection; infection in ankle fixation; cheap and cheerful OK in MTP fusion plates; sliding fibular graft for peroneal tendon pathology and fusion for failed ankle replacement.
Over a five-year period, adult patients with
marginal impaction of acetabular fractures were identified from
a registry of patients who underwent acetabular reconstruction in
two tertiary referral centres. Fractures were classified according
to the system of Judet and Letournel. A topographic classification
to describe the extent of articular impaction was used, dividing
the joint surface into superior, middle and inferior thirds. Demographic information,
hospitalisation and surgery-related complications, functional (EuroQol
5-D) and radiological outcome according to Matta’s criteria were
recorded and analysed. In all, 60 patients (57 men, three women)
with a mean age of 41 years (18 to 72) were available at a mean
follow-up of 48 months (24 to 206). The quality of the reduction
was ‘anatomical’ in 44 hips (73.3%) and ‘imperfect’ in 16 (26.7%).
The originally achieved anatomical reduction was lost in Univariate linear regression analysis of the functional outcome
showed that factors associated with worse pain were increasing age
and an inferior location of the impaction. Elevation of the articular
impaction leads to joint preservation with satisfactory overall
medium-term functional results, but secondary collapse is likely
to occur in some patients. Cite this article:
This study was designed to test the hypothesis
that the sensory innervation of bone might play an important role
in sensing and responding to low-intensity pulsed ultrasound and
explain its effect in promoting fracture healing. In 112 rats a
standardised mid-shaft tibial fracture was created, supported with
an intramedullary needle and divided into four groups of 28. These
either had a sciatic neurectomy or a patellar tendon resection as
control, and received the ultrasound or not as a sham treatment.
Fracture union, callus mineralisation and remodelling were assessed using
plain radiography, peripheral quantitative computed tomography and
histomorphology. Daily ultrasound treatment significantly increased the rate of
union and the volumetric bone mineral density in the fracture callus
in the neurally intact rats (p = 0.025), but this stimulating effect
was absent in the rats with sciatic neurectomy. Histomorphology
demonstrated faster maturation of the callus in the group treated
with ultrasound when compared with the control group. The results
supported the hypothesis that intact innervation plays an important
role in allowing low-intensity pulsed ultrasound to promote fracture
healing.
Bicondylar tibial plateau fractures result from
high-energy injuries. Fractures of the tibial plateau can involve
the tibial tubercle, which represents a disruption to the extensor
mechanism and logically must be stabilised. The purpose of this
study was to identify the incidence of an independent tibial tubercle
fracture in bicondylar tibial plateau fractures, and to report management
strategies and potential complications. We retrospectively reviewed
a prospectively collected orthopaedic trauma database for the period
January 2003 to December 2008, and identified 392 bicondylar fractures
of the tibial plateau, in which 85 tibial tubercle fractures (21.6%)
were identified in 84 patients. There were 60 men and 24 women in
our study group, with a mean age of 45.4 years (18 to 71). In 84 fractures
open reduction and internal fixation was undertaken, either with
screws alone (23 patients) or with a plate and screws (61 patients).
The remaining patient was treated non-operatively. In all, 52 fractures
were available for clinical and radiological assessment at a mean
follow-up of 58.5 weeks (24 to 94). All fractures of the tibial
tubercle united, but 24 of 54 fractures (46%) required a secondary
procedure for their tibial plateau fracture. Four patients reported
pain arising from prominent tubercle plates and screws, which in
one patient required removal. Tibial tubercle fractures occurred
in over one-fifth of the bicondylar tibial plateau fractures in
our series. Fixation is necessary and can be reliably performed
with screws alone or with a screw and plate, which restores the
extensor mechanism and facilitates early knee flexion. Cite this article:
We performed a comprehensive systematic review of the literature to examine the role of hemiarthroplasty in the early management of fractures of the proximal humerus. In all, 16 studies dealing with 810 hemiarthroplasties in 808 patients with a mean age of 67.7 years (22 to 91) and a mean follow-up of 3.7 years (0.66 to 14) met the inclusion criteria. Most of the fractures were four-part fractures or fracture-dislocations. Several types of prosthesis were used. Early passive movement on the day after surgery and active movement after union of the tuberosities at about six weeks was described in most cases. The mean active anterior elevation was to 105.7° (10° to 180°) and the mean abduction to 92.4° (15° to 170°). The incidence of superficial and deep infection was 1.55% and 0.64%, respectively. Complications related to the fixation and healing of the tuberosities were observed in 86 of 771 cases (11.15%). The estimated incidence of heterotopic ossification was 8.8% and that of proximal migration of the humeral head 6.8%. The mean Constant score was 56.63 (11 to 98). At the final follow-up, no pain or only mild pain was experienced by most patients, but marked limitation of function persisted.
Blast and ballistic weapons used on the battlefield cause devastating injuries rarely seen outside armed conflict. These extremely high-energy injuries predominantly affect the limbs and are usually heavily contaminated with soil, foliage, clothing and even tissue from other casualties. Once life-threatening haemorrhage has been addressed, the military surgeon’s priority is to control infection. Combining historical knowledge from previous conflicts with more recent experience has resulted in a systematic approach to these injuries. Urgent debridement of necrotic and severely contaminated tissue, irrigation and local and systemic antibiotics are the basis of management. These principles have resulted in successful healing of previously unsurvivable wounds. Healthy tissue must be retained for future reconstruction, vulnerable but viable tissue protected to allow survival and avascular tissue removed with all contamination. While recent technological and scientific advances have offered some advantages, they must be judged in the context of a hard-won historical knowledge of these wounds. This approach is applicable to comparable civilian injury patterns. One of the few potential benefits of war is the associated improvement in our understanding of treating the severely injured; for this positive effect to be realised these experiences must be shared.
For the treatment of ununited fractures, we developed
a system of delivering magnetic labelled mesenchymal stromal cells
(MSCs) using an extracorporeal magnetic device. In this study, we
transplanted ferucarbotran-labelled and luciferase-positive bone
marrow-derived MSCs into a non-healing femoral fracture rat model
in the presence of a magnetic field. The biological fate of the
transplanted MSCs was observed using luciferase-based bioluminescence
imaging and we found that the number of MSC derived photons increased
from day one to day three and thereafter decreased over time. The
magnetic cell delivery system induced the accumulation of photons at
the fracture site, while also retaining higher photon intensity
from day three to week four. Furthermore, radiological and histological
findings suggested improved callus formation and endochondral ossification.
We therefore believe that this delivery system may be a promising
option for bone regeneration.
To investigate the differences of open reduction and internal
fixation (ORIF) of complex AO Type C distal radius fractures between
two different models of a single implant type. A total of 136 patients who received either a 2.4 mm (n = 61)
or 3.5 mm (n = 75) distal radius locking compression plate (LCP
DR) using a volar approach were followed over two years. The main
outcome measurements included motion, grip strength, pain, and the
scores of Gartland and Werley, the Short-Form 36 (SF-36) and the
Disabilities of the Arm, Shoulder, and Hand (DASH). Differences
between the treatment groups were evaluated using regression analysis
and the likelihood ratio test with significance based on the Bonferroni
corrected p-value of <
0.003.Objectives
Methods
A new anterior intrapelvic approach for the surgical
management of displaced acetabular fractures involving predominantly
the anterior column and the quadrilateral plate is described. In
order to establish five ‘windows’ for instrumentation, the extraperitoneal
space is entered along the lateral border of the rectus abdominis
muscle. This is the so-called ‘Pararectus’ approach. The feasibility
of safe dissection and optimal instrumentation of the pelvis was
assessed in five cadavers (ten hemipelves) before implementation
in a series of 20 patients with a mean age of 59 years (17 to 90),
of whom 17 were male. The clinical evaluation was undertaken between
December 2009 and December 2010. The quality of reduction was assessed
with post-operative CT scans and the occurrence of intra-operative
complications was noted. In the treatment of acetabular fractures predominantly involving
the anterior column and the quadrilateral plate, the Pararectus
approach allowed anatomical restoration with minimal morbidity related
to the surgical access.
The use of plate-and-cable constructs to treat periprosthetic fractures around a well-fixed femoral component in total hip replacements has been reported to have high rates of failure. Our aim was to evaluate the results of a surgical treatment algorithm to use these lateral constructs reliably in Vancouver type-B1 and type-C fractures. The joint was dislocated and the stability of the femoral component was meticulously evaluated in 45 type-B1 fractures. This led to the identification of nine (20%) unstable components. The fracture was considered to be suitable for single plate-and-cable fixation by a direct reduction technique if the integrity of the medial cortex could be restored. Union was achieved in 29 of 30 fractures (97%) at a mean of 6.4 months (3 to 30) in 29 type-B1 and five type-C fractures. Three patients developed an infection and one construct failed. Using this algorithm plate-and-cable constructs can be used safely, but indirect reduction with minimal soft-tissue damage could lead to shorter times to union and lower rates of complications.