We evaluated the rates of survival and cause
of revision of seven different brands of cemented primary total
knee replacement (TKR) in the Norwegian Arthroplasty Register during
the years 1994 to 2009. Revision for any cause, including resurfacing
of the patella, was the primary endpoint. Specific causes of revision
were secondary outcomes. Three posterior cruciate-retaining (PCR) fixed modular-bearing
TKRs, two fixed non-modular bearing PCR TKRs and two mobile-bearing
posterior cruciate-sacrificing TKRs were investigated in a total
of 17 782 primary TKRs. The median follow-up for the implants ranged
from 1.8 to 6.9 years. Kaplan-Meier 10-year survival ranged from
89.5% to 95.3%. Cox’s relative risk (RR) was calculated relative
to the fixed modular-bearing Profix knee (the most frequently used
TKR in Norway), and ranged from 1.1 to 2.6. The risk of revision
for aseptic tibial loosening was higher in the mobile-bearing LCS
Classic (RR 6.8 (95% confidence interval (CI) 3.8 to 12.1)), the
LCS Complete (RR 7.7 (95% CI 4.1 to 14.4)), the fixed modular-bearing
Duracon (RR 4.5 (95% CI 1.8 to 11.1)) and the fixed non-modular
bearing AGC Universal TKR (RR 2.5 (95% CI 1.3 to 5.1)), compared
with the Profix. These implants (except AGC Universal) also had
an increased risk of revision for femoral loosening (RR 2.3
(95% CI 1.1 to 4.8), RR 3.7 (95% CI 1.6 to 8.9), and RR 3.4 (95%
CI 1.1 to 11.0), respectively). These results suggest that aseptic
loosening is related to design in TKR. Cite this article:
Smart trials are total knee tibial trial liners
with load bearing and alignment sensors that will graphically show quantitative
compartment load-bearing forces and component track patterns. These
values will demonstrate asymmetrical ligament balancing and misalignments
with the medial retinaculum temporarily closed. Currently surgeons
use feel and visual estimation of imbalance to assess soft-tissue
balancing and tracking with the medial retinaculum open, which results
in lower medial compartment loads and a wider anteroposterior tibial
tracking pattern. The sensor trial will aid the total knee replacement
surgeon in performing soft-tissue balancing by providing quantitative
visual feedback of changes in forces while performing the releases
incrementally. Initial experience using a smart tibial trial is
presented.
This conversation represents an attempt by several
arthroplasty surgeons to critique several abstracts presented over
the last year as well as to use them as a jumping off point for trying
to figure out where they fit in into our current understanding of
multiple issues in modern hip and knee arthroplasty.
We continued a prospective longitudinal follow-up
study of 53 remaining patients who underwent open total meniscectomy
as adolescents and who at that time had no other intra-articular
pathology of the knee. Their clinical, radiological and patient-reported
outcomes are described at a mean follow-up of 40 years (33 to 50).
The cohort of patients who had undergone radiological evaluation
previously after 30 years were invited for clinical examination,
radiological evaluation and review using two patient-reported outcome
measures. A total of seven patients (13.2%) had already undergone total
knee replacement at the time of follow-up. A significant difference
was observed between the operated and non-operated knee in terms
of range of movement and osteoarthritis of the tibiofemoral joint,
indicating a greater than fourfold relative risk of osteoarthritis
at 40 years post-operatively. All patients were symptomatic as defined
by the Knee Injury and Osteoarthritis Outcome Score. This study represents the longest follow-up to date and it can
be concluded that meniscectomy leads to symptomatic osteoarthritis
of the knee later in life, with a resultant 132-fold increase in
the rate of total knee replacement in comparison to their geographical
and age-matched peers.
The lateral compartment is predominantly affected
in approximately 10% of patients with osteoarthritis of the knee. The
anatomy, kinematics and loading during movement differ considerably
between medial and lateral compartments of the knee. This in the
main explains the relative protection of the lateral compartment
compared with the medial compartment in the development of osteoarthritis.
The aetiology of lateral compartment osteoarthritis can be idiopathic,
usually affecting the femur, or secondary to trauma commonly affecting
the tibia. Surgical management of lateral compartment osteoarthritis
can include osteotomy, unicompartmental knee replacement and total
knee replacement. This review discusses the biomechanics, pathogenesis
and development of lateral compartment osteoarthritis and its management. Cite this article:
Medium-term survivorship of the Oxford phase
3 unicompartmental knee replacement (UKR) has not yet been established
in an Asian population. We prospectively evaluated the outcome of
400 phase 3 Oxford UKRs in 320 Korean patients with a mean age at
the time of operation of 69 years (48 to 82). The mean follow-up
was 5.2 years (1 to 10). Clinical and radiological assessment was
carried out pre- and post-operatively. At five years, the mean Knee
Society knee and functional scores had increased significantly from
56.2 (30 to 91) pre-operatively to 87.2 (59 to 98) (p = 0.034) and
from 59.2 (30 to 93) to 88.3 (50 to 100) (p = 0.021), respectively.
The Oxford knee score increased from a mean of 25.8 (12 to 39) pre-operatively
to 39.8 (25 to 58) at five years (p = 0.038). The ten-year survival
rate was 94% (95% confidence interval 90.1 to 98.0). A total of
14 UKRs (3.5%) required revision. The most common reason for revision
was dislocation of the bearing in 12 (3%). Conversion to a total
knee replacement was required in two patients who developed osteoarthritis
of the lateral compartment. This is the largest published series of UKR in Korean patients.
It shows that the mid-term results after a minimally invasive Oxford
phase 3 UKR can yield satisfactory clinical and functional results
in this group of patients.
Radiological assessment of total and unicompartmental
knee replacement remains an essential part of routine care and follow-up.
Appreciation of the various measurements that can be identified
radiologically is important. It is likely that routine plain radiographs
will continue to be used, although there has been a trend towards
using newer technologies such as CT, especially in a failing knee,
where it provides more detailed information, albeit with a higher
radiation exposure. The purpose of this paper is to outline the radiological parameters
used to evaluate knee replacements, describe how these are measured
or classified, and review the current literature to determine their
efficacy where possible.
Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses.
We investigated whether the extension gap in total knee replacement (TKR) would be changed when the femoral component was inserted. The extension gap was measured with and without the femoral component in place in 80 patients with varus osteoarthritis undergoing posterior-stabilised TKR. The effect of a post-operative increase in the size of the femoral posterior condyles was also evaluated. The results showed that placement of the femoral component significantly reduced the medial and lateral extension gaps by means of 1.0 mm and 0.9 mm, respectively (p <
0.0001). The extension gap was reduced when a larger femoral component was selected relative to the thickness of the resected posterior condyle. When the post-operative posterior lateral condyle was larger than that pre-operatively, 17 of 41 knees (41%) showed a decrease in the extension gap of >
2.0 mm. When a specially made femoral trial component with a posterior condyle enlarged by 4 mm was tested, the medial and lateral extension gaps decreased further by means of 2.1 mm and 2.8 mm, respectively. If the thickness of the posterior condyle is expected to be larger than that pre-operatively, it should be recognised that the extension gap is likely to be altered. This should be taken into consideration when preparing the extension gap.
The purpose of this study was to investigate
whether a gender-specific high-flexion posterior-stabilised (PS)
total knee replacement (TKR) would offer advantages over a high-flex
PS TKR regarding range of movement (ROM), ‘feel’ of the knee, pain
and satisfaction, as well as during activity. A total of 24 female
patients with bilateral osteoarthritis entered this prospective,
blind randomised trial in which they received a high-flex PS TKR
in one knee and a gender-specific high-flexion PS TKR in the other
knee. At follow-up, patients were assessed clinically measuring
ROM, and questioned about pain, satisfaction and daily ‘feel’ of
each knee. Patients underwent gait analysis pre-operatively and
at one year, which yielded kinematic, kinetic and temporospatial
parameters indicative of knee function during gait. At final follow-up
we found no statistically significant differences in ROM (p = 0.82).
The median pain score was 0 (0 to 8) in both groups (p = 0.95).
The median satisfaction score was 9 (4 to 10) in the high-flex group
and 8 (0 to 10) in the gender-specific group (p = 0.98). The median
‘feel’ score was 9 (3 to 10) in the high-flex group and 8 (0 to
10) in the gender-specific group (p = 0.66). Gait analysis showed
no statistically significant differences between the two prosthetic
designs in any kinematic, kinetic or temporospatial parameters. Both designs produced good clinical results with
The purpose of this study was to evaluate the
long-term functional and radiological outcomes of arthroscopic removal
of unstable osteochondral lesions with subchondral drilling in the
lateral femoral condyle. We reviewed the outcome of 23 patients
(28 knees) with stage III or IV osteochondritis dissecans lesions
of the lateral femoral condyle at a mean follow-up of 14 years (10
to 19). The functional clinical outcomes were assessed using the Lysholm
score, which improved from a mean of 38.1 ( We found radiological evidence of degenerative changes in the
third or fourth decade of life at a mean of 14 years after arthroscopic
excision of the loose body and subchondral drilling for an unstable
osteochondral lesion of the lateral femoral condyle. Clinical and
functional results were more satisfactory.
We performed a prospective, randomised trial of 44 patients to compare the functional outcomes of a posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-substituting total knee arthroplasty, and to gain a better understanding of the At follow-up at five years, no statistically significant differences were found in the clinical outcome measurements for either design. The prevalence of radiolucent lines and the survivorship were the same. In a subgroup of 15 knees, additional image-intensifier analysis in the horizontal and sagittal planes was performed during step-up and lunge activity. Our analysis revealed striking differences. Lunge activity showed a mean posterior displacement of both medial and lateral tibiofemoral contact areas (roll-back) which was greater and more consistent in the cruciate-substituting than in the cruciate-retaining group (medial p <
0.0001, lateral p = 0.011). The amount of posterior displacement could predict the maximum flexion which could be achieved (p = 0.018). Forward displacement of the tibiofemoral contact area in flexion during stair activity was seen more in the cruciate-retaining than in the cruciate-substituting group. This was attributed mainly to insufficiency of the posterior cruciate ligament and partially to that of the anterior cruciate ligament. We concluded that, despite similar clinical outcomes, there are significant kinematic differences between cruciate-retaining and cruciate-substituting arthroplasties.
The purpose of this study was to examine the effect of posterior
cruciate ligament (PCL) retention, PCL recession, and PCL excision
during cruciate-retaining total knee replacement. A total of 3018 anatomic graduated component total knee replacements
were examined; 1846 of these retained the PCL, 455 PCLs were partially
recessed, and in 717 the PCL was completely excised from the back
of the tibia.Objectives
Methods
We report a variant of tibial hemimelia in a six-year-old boy that did not comply with recognised classification systems. The femur and
We evaluated the long-term outcome of isolated endoscopically-assisted posterior cruciate ligament reconstruction in 26 patients using hamstring tendon autografts after failure of conservative management. At ten years after surgery the mean International Knee Documentation Committee subjective knee score was 87 ( At ten years endoscopic reconstruction of the posterior cruciate ligament with hamstring tendon autograft is effective in reducing knee symptoms. Of the series, 22 patients underwent radiological assessment for the development of osteoarthritis using the Kellgren-Lawrence grading scale. In four patients, grade 2 changes with loss of joint space was observed and another four patients showed osteophyte formation with moderate joint space narrowing (grade 3). These findings compared favourably with non-operatively managed injuries of the posterior cruciate ligament. This procedure for symptomatic patients with posterior cruciate ligament laxity who have failed conservative management offers good results.
Normal function of the patellofemoral joint is maintained by a complex interaction between soft tissues and articular surfaces. No quantitative data have been found on the relative contributions of these structures to patellar stability. Eight knees were studied using a materials testing machine to displace the patella 10 mm laterally and medially and measure the force required. Patellar stability was tested from 0° to 90° knee flexion with the quadriceps tensed to 175 N. Four conditions were examined: intact, vastus medialis obliquus relaxed, flat lateral condyle, and ruptured medial retinaculae. Abnormal trochlear geometry reduced the lateral stability by 70% at 30° flexion, while relaxation of vastus medialis obliquus caused a 30% reduction. Ruptured medial retinaculae had the largest effect at 0° flexion with 49% reduction. There was no effect on medial stability. There is a complex interaction between these structures, with their contributions to loss of lateral patellar stability varying with knee flexion.
Animal studies have shown that implanted anterior cruciate ligament (ACL) grafts initially undergo a process of revascularisation prior to remodelling, ultimately increasing mechanical strength. We investigated whether minimal debridement of the intercondylar notch and the residual stump of the ruptured ACL leads to earlier revascularisation in ACL reconstruction in humans. We undertook a randomised controlled clinical trial in which 49 patients underwent ACL reconstruction using autologous four-strand hamstring tendon grafts. Randomised by the use of sealed envelopes, 25 patients had a conventional clearance of the intercondylar notch and 24 had a minimal debridement method. Three patients were excluded from the study. All patients underwent MR scanning postoperatively at 2, 6 and 12 months, together with clinical assessment using a KT-1000 arthrometer and International Knee Documentation Committee (IKDC) evaluation. All observations were made by investigators blinded to the surgical technique. Signal intensity was measured in 4 mm diameter regions of interest along the ACL graft and the mid-substance of the posterior cruciate ligament. Our results indicate that minimal debridement leads to earlier revascularisation within the mid-substance of the ACL graft at two months (paired
The purpose of this study was to test the hypothesis that patella alta leads to a less favourable situation in terms of patellofemoral contact force, contact area and contact pressure than the normal patellar position, and thereby gives rise to anterior knee pain. A dynamic knee simulator system based on the Oxford rig and allowing six degrees of freedom was adapted in order to simulate and record the dynamic loads during a knee squat from 30° to 120° flexion under physiological conditions. Five different configurations were studied, with variable predetermined patellar heights. The patellofemoral contact force increased with increasing knee flexion until contact occurred between the quadriceps tendon and the femoral trochlea, inducing load sharing. Patella alta caused a delay of this contact until deeper flexion. As a consequence, the maximal patellofemoral contact force and contact pressure increased significantly with increasing patellar height (p <
0.01). Patella alta was associated with the highest maximal patellofemoral contact force and contact pressure. When averaged across all flexion angles, a normal patellar position was associated with the lowest contact pressures. Our results indicate that there is a biomechanical reason for anterior knee pain in patients with patella alta.
High-flexion total knee replacement (TKR) designs
have been introduced to improve flexion after TKR. Although the
early results of such designs were promising, recent literature
has raised concerns about the incidence of early loosening of the
femoral component. We compared the minimum force required to cause
femoral component loosening for six high-flexion and six conventional
TKR designs in a laboratory experiment. Each TKR design was implanted in a femoral bone model and placed
in a loading frame in 135° of flexion. Loosening of the femoral
component was induced by moving the tibial component at a constant
rate of displacement while maintaining the same angle of flexion.
A stereophotogrammetric system registered the relative movement
between the femoral component and the underlying bone until loosening
occurred. Compared with high-flexion designs, conventional TKR designs
required a significantly higher force before loosening occurred
(p <
0.001). High-flexion designs with closed box geometry required
significantly higher loosening forces than high-flexion designs
with open box geometry (p = 0.0478). The presence of pegs further contributed
to the fixation strength of components. We conclude that high-flexion designs have a greater risk for
femoral component loosening than conventional TKR designs. We believe
this is attributable to the absence of femoral load sharing between
the prosthetic component and the condylar bone during flexion.
We have shown in a previous study that patients with combined lesions of the anterior cruciate (ACL) and medial collateral ligaments (MCL) had similar anteroposterior (AP) but greater valgus laxity at 30° after reconstruction of the ACL when compared with patients who had undergone reconstruction of an isolated ACL injury. The present study investigated the same cohort of patients after a minimum of three years to evaluate whether the residual valgus laxity led to a poorer clinical outcome. Each patient had undergone an arthroscopic double-bundle ACL reconstruction using a semitendinosus-gracilis graft. In the combined ACL/MCL injury group, the grade II medial collateral ligament injury was not treated. At follow-up, AP laxity was measured using a KT-2000 arthrometer, while valgus laxity was evaluated with Telos valgus stress radiographs and compared with the uninjured knee. We evaluated clinical outcome scores, muscle girth and time to return to activities for the two groups. Valgus stress radiographs showed statistically significant greater mean medial joint opening in the reconstructed compared with the uninjured knees (1.7 mm (