This study reports the mid-term results of a large-bearing hybrid metal-on-metal total hip replacement in 199 hips (185 patients) with a mean follow-up of 62 months (32 to 83). Two patients died of unrelated causes and 13 were lost to follow-up. In all, 17 hips (8.5%) have undergone revision, and a further 14 are awaiting surgery. All revisions were symptomatic. Of the revision cases, 14 hips showed evidence of adverse reactions to metal debris. The patients revised or awaiting revision had significantly higher whole blood cobalt ion levels (p = 0.001), but no significant difference in acetabular component size or position compared with the unrevised patients. Wear analysis (n = 5) showed increased wear at the trunnion-head interface, normal levels of wear at the articulating surfaces and evidence of corrosion on the surface of the stem. The cumulative survival rate, with revision for any reason, was 92.4% (95% confidence interval 87.4 to 95.4) at five years. Including those awaiting surgery, the revision rate would be 15.1% with a cumulative survival at five years of 89.6% (95% confidence interval 83.9 to 93.4). This hybrid metal-on-metal total hip replacement series has shown an unacceptably high rate of failure, with evidence of high wear at the trunnion-head interface and passive corrosion of the stem surface. This raises concerns about the use of large heads on conventional 12/14 tapers.
The design of the Charnley total hip replacement follows the principle of low frictional torque. It is based on the largest possible difference between the radius of the femoral head and that of the outer aspect of the acetabular component. The aim is to protect the bone-cement interface by movement taking place at the smaller radius, the articulation. This is achieved in clinical practice by a 22.225 mm diameter head articulating with a 40 mm or 43 mm diameter acetabular component of ultra-high molecular weight polyethylene. We compared the incidence of aseptic loosening of acetabular components with an outer diameter of 40 mm and 43 mm at comparable depths of penetration with a mean follow-up of 17 years (1 to 40). In cases with no measurable wear none of the acetabular components were loose. With increasing acetabular penetration there was an increased incidence of aseptic loosening which reflected the difference in the external radii, with 1.5% at 1 mm, 8.8% at 2 mm, 9.7% at 3 mm and 9.6% at 4 mm of penetration in favour of the larger 43 mm acetabular component. Our findings support the Charnley principle of low frictional torque. The level of the benefit is in keeping with the predicted values.
We report the use of an allograft prosthetic composite for reconstruction of the skeletal defect in complex revision total hip replacement for severe proximal femoral bone loss. Between 1986 and 1999, 72 patients (20 men, 52 women) with a mean age of 59.9 years (38 to 78) underwent reconstruction using this technique. At a mean follow-up of 12 years (8 to 20) 57 patients were alive, 14 had died and one was lost to follow-up. Further revision was performed in 19 hips at a mean of 44.5 months (11 to 153) post-operatively. Causes of failure were aseptic loosening in four, allograft resorption in three, allograft nonunion in two, allograft fracture in four, fracture of the stem in one, and deep infection in five. The survivorship of the allograft-prosthesis composite at ten years was 69.0% (95% confidence interval 67.7 to 70.3) with 26 patients remaining at risk. Survivorship was statistically significantly affected by the severity of the pre-operative bone loss (Paprosky type IV; p = 0.019), the number of previous hip revisions exceeding two (p = 0.047), and the length of the allograft used (p = 0.005).
Dislocation is a common reason for revision following total hip replacement. This study investigated the relationship between the bearing surface and the risk of revision due to dislocation. It was based on 110 239 primary total hip replacements with a diagnosis of osteoarthritis collected by the Australian Orthopaedic Association National Joint Replacement Registry between September 1999 and December 2007. A total of 862 (0.78%) were revised because of dislocation. Ceramic-on-ceramic bearing surfaces had a lower risk of requiring revision due to dislocation than did metal-on-polyethylene and ceramic-on-polyethylene surfaces, with a follow-up of up to seven years. However, ceramic-on-ceramic implants were more likely to have larger prosthetic heads and to have been implanted in younger patients. The size of the head of the femoral component and age are known to be independent predictors of dislocation. Therefore, the outcomes were stratified by the size of the head and age. There is a significantly higher rate of revision for dislocation in ceramic-on-ceramic bearing surfaces than in metal-on-polyethylene implants when smaller sizes (≤ 28 mm) of the head were used in younger patients (<
65 years) (hazard ratio = 1.53, p = 0.041) and also with larger (>
28 mm) and in older patients (≥ 65 years) (hazard ratio = 1.73, p = 0.016).
Inflammatory pseudotumours occasionally occur after metal-on-metal hip resurfacing and often lead to revision. Our aim was to determine the severity of this complication by assessing the outcome of revision in these circumstances and by comparing this with the outcome of other metal-on-metal hip resurfacing revisions as well as that of matched primary total hip replacements. We identified 53 hips which had undergone metal-on-metal hip resurfacing and required revision at a mean of 1.59 years (0.01 to 6.69) after operation. Of these, 16 were revised for pseudotumours, 21 for fracture and 16 for other reasons. These were matched by age, gender and diagnosis with 103 patients undergoing primary total hip replacement with the Exeter implant. At a mean follow-up of three years (0.8 to 7.2) the outcome of metal-on-metal hip resurfacing revision for pseudotumour was poor with a mean Oxford hip score of 20.9 ( The outcome of revision for pseudotumour is poor and consideration should be given to early revision to limit the extent of the soft-tissue destruction. The outcome of resurfacing revision for other causes is good.
Endoprosthetic replacement of the proximal femur may be required to treat primary bone tumours or destructive metastases either with impending or established pathological fracture. Modular prostheses are available off the shelf and can be adapted to most reconstructive situations for this purpose. We have assessed the clinical and functional outcome of using the METS (Stanmore Implants Worldwide) modular tumour prosthesis to reconstruct the proximal femur in 100 consecutive patients between 2001 and 2006. We compared the results with the published series for patients managed with modular and custom-made endoprosthetic replacements for the same conditions. There were 52 males and 48 females with a mean age of 56.3 years (16 to 84) and a mean follow-up of 24.6 months (0 to 60). In 65 patients the procedure was undertaken for metastases, in 25 for a primary bone tumour, and in ten for other malignant conditions. A total of 46 patients presented with a pathological fracture, and 19 presented with failed fixation of a previous pathological fracture. The overall patient survival was 63.6% at one year and 23.1% at five years, and was significantly better for patients with a primary bone tumour than for those with metastatic tumour (82.3% vs 53.3%, respectively at one year (p = 0.003)). There were six early dislocations of which five could be treated by closed reduction. No patient needed revision surgery for dislocation. Revision surgery was required by six (6%) patients, five for pain caused by acetabular wear and one for tumour progression. Amputation was needed in four patients for local recurrence or infection. The estimated five-year implant survival with revision as the endpoint was 90.7%. The mean Toronto Extremity Salvage score was 61% (51% to 95%). The implant survival and complications resulting from the use of the modular system were comparable to the published series of both custom-made and other modular proximal femoral implants. We conclude that at intermediate follow-up the modular tumour prosthesis for proximal femur replacement provides versatility, a low incidence of implant-related complications and acceptable function for patients with metastatic tumours, pathological fractures and failed fixation of the proximal femur. It also functions as well as a custom-made endoprosthetic replacement.
Due to economic constraints, it has been suggested that joint replacement patients can be followed up in primary care. There are clinical, ethical and academic reasons why we must ensure that our joint replacements are appropriately clinically and radiologically followed up to minimise complications. This Editorial discusses this.
We have reviewed 42 patients who had revision of metal-on-metal resurfacing procedures, mostly because of problems with the acetabular component. The revisions were carried out a mean of 26.2 months (1 to 76) after the initial operation and most of the patients (30) were female. Malpositioning of the acetabular component resulted in 27 revisions, mostly because of excessive abduction (mean 69.9°; 56° to 98°) or insufficient or excessive anteversion. Seven patients had more than one reason for revision. The mean increase in the diameter of the component was 1.8 mm (0 to 4) when exchange was needed. Malpositioning of the components was associated with metallosis and a high level of serum ions. The results of revision of the femoral component to a component with a modular head were excellent, but four patients had dislocation after revision and four required a further revision.
During open reduction of an irreducible anterior dislocation of a total hip replacement with an Oxinium femoral head, it was observed that the head had been significantly damaged. Gross and scanning electron microscopic examination revealed cracking, gouging, and delamination of the surface. Because of the risk which this poses for damaging the polyethylene acetabular liner, it is strongly recommended that patients with this type of prosthetic head be carefully monitored after a dislocation.
Ensuring the accuracy of the intra-operative orientation of the acetabular component during a total hip replacement can be difficult. In this paper we introduce a reproducible technique using the transverse acetabular ligament to determine the anteversion of the acetabular component. We have found that this ligament can be identified in virtually every hip undergoing primary surgery. We describe an intra-operative grading system for the appearance of the ligament. This technique has been used in 1000 consecutive cases. During a minimum follow-up of eight months the dislocation rate was 0.6%. This confirms our hypothesis that the transverse acetabular ligament can be used to determine the position of the acetabular component. The method has been used in both conventional and minimally-invasive approaches.
A 34-year-old woman with a benign form of osteopetrosis developed osteoarthritis of the hip. In order to avoid the difficulties associated with inserting the femoral component of a conventional total hip arthroplasty, a hybrid metal-on-metal resurfacing was performed. There were several technical challenges associated with the procedure, including the sizing of the component, press-fit fixation of the acetabular component and femoral head preparation, as well as trying to avoid a fracture. No surgical complication occurred. After more than a year following surgery, the patient showed excellent clinical function and remained satisfied with the outcome. We conclude that the hybrid metal-on-metal resurfacing arthroplasty represents a valuable option for the treatment of patients with osteopetrosis and secondary hip osteoarthritis.
Arthritis of the hip in the young adult can be a disabling condition. Recent years have witnessed extensive research related to the management of this condition. This article reviews the current status with regard to aetiology, diagnosis and treatment of arthritis of the hip in the young adult.
Hip resurfacing is being performed more frequently in the United Kingdom. The possible benefits include more accurate restoration of leg length, femoral offset and femoral anteversion than occurs after total hip arthroplasty (THA). We compared anteroposterior radiographs from 26 patients who had undergone hybrid THA (uncemented cup/cemented stem), with 28 who had undergone Birmingham Hip Resurfacing arthroplasty (BHR). We measured the femoral offset, femoral length, acetabular offset and acetabular height with reference to the normal contralateral hip. The data were analysed by paired There was a significant reduction in femoral offset (p = 0.0004) and increase in length (p = 0.001) in the BHR group. In the THA group, there was a significant reduction in acetabular offset (p = 0.0003), but femoral offset and overall hip length were restored accurately. We conclude that hip resurfacing does not restore hip mechanics as accurately as THA.
We treated 34 patients with recurrent dislocation of the hip with a constrained acetabular component. Roentgen stereophotogrammetric analysis was performed to assess migration of the prosthesis. The mean clinical follow-up was 3.0 years (2.2 to 4.8) and the radiological follow-up was 2.7 years (2.0 to 4.8). At the latest review six patients had died and none was lost to follow-up. There were four acetabular revisions, three for aseptic loosening and one for deep infection. Another acetabular component was radiologically loose with progressive radiolucent lines in all Gruen zones and was awaiting revision. The overall rate of aseptic loosening was 11.8% (4 of 34). Roentgen stereophotogrammetric analysis in the non-revised components confirmed migration of up to 1.06 mm of translation and 2.32° of rotation at 24 months. There was one case of dislocation and dissociation of the component in the same patient. Of the 34 patients, 33 (97.1%) had no further episodes of dislocation. The constrained acetabular component reported in our study was effective in all but one patient with instability of the hip, but the rate of aseptic loosening was higher than has been reported previously and requires further investigation.
We prospectively studied 217 patients who underwent 234 Elite Plus total hip arthroplasties. At a mean of 6.4 (SD 0.7) years post-operatively, 39 patients had died and 22 were either lost to follow-up or had no radiographs available. Clinical (Oxford hip score) and radiological assessments were performed on 156 patients (168 hip arthroplasties) who had a mean age of 67.7 (SD 9.7) years at operation. In the assessed group, 26 of 159 (16.4%) of femoral stems which had not already been revised and 19 of 159 (11.9%) of acetabular cups were definitely loose. In total, 52 of 168 (31%) of hips had either been revised or had definite evidence of loosening of a component. We could not establish any relationship between clinical and radiological outcomes. Despite the fact that the clinical outcome and rate of revision for the Elite Plus appeared to meet international standards, our findings give us cause for concern. We believe that joint registries should include radiological surveillance in order to provide reliable information about medium-term outcomes for hip prostheses.
Despite the increasing interest and subsequent published literature on hip resurfacing arthroplasty, little is known about the prevalence of its complications and in particular the less common modes of failure. The aim of this study was to identify the prevalence of failure of hip resurfacing arthroplasty and to analyse the reasons for it. From a multi-surgeon series (141 surgeons) of 5000 Birmingham hip resurfacings we have analysed the modes, prevalence, gender differences and times to failure of any hip requiring revision. To date 182 hips have been revised (3.6%). The most common cause for revision was a fracture of the neck of the femur (54 hips, prevalence 1.1%), followed by loosening of the acetabular component (32 hips, 0.6%), collapse of the femoral head/avascular necrosis (30 hips, 0.6%), loosening of the femoral component (19 hips, 0.4%), infection (17 hips, 0.3%), pain with aseptic lymphocytic vascular and associated lesions (ALVAL)/metallosis (15 hips, 0.3%), loosening of both components (five hips, 0.1%), dislocation (five hips, 0.1%) and malposition of the acetabular component (three hips, 0.1%). In two cases the cause of failure was unknown. Comparing men with women, we found the prevalence of revision to be significantly higher in women (women = 5.7%; men = 2.6%, p <
0.001). When analysing the individual modes of failure women had significantly more revisions for loosening of the acetabular component, dislocation, infection and pain/ALVAL/metallosis (p <
0.001, p = 0.004, p = 0.008, p = 0.01 respectively). The mean time to failure was 2.9 years (0.003 to 11.0) for all causes, with revision for fracture of the neck of the femur occurring earlier than other causes (mean 1.5 years, 0.02 to 11.0). There was a significantly shorter time to failure in men (mean 2.1 years, 0.4 to 8.7) compared with women (mean 3.6 years, 0.003 to 11.0) (p <
0.001).
Pelvic discontinuity with associated bone loss is a complex challenge in acetabular revision surgery. Reconstruction using ilio-ischial cages combined with trabecular metal acetabular components and morsellised bone (the component-cage technique) is a relatively new method of treatment. We reviewed a consecutive series of 26 cases of acetabular revision reconstructions in 24 patients with pelvic discontinuity who had been treated by the component-cage technique. The mean follow-up was 44.6 months (24 to 68). Failure was defined as migration of a component of >
5 mm. In 23 hips (88.5%) there was no clinical or radiological evidence of loosening at the last follow-up. The mean Harris hip score improved significantly from 46.6 points (29.5 to 68.5) to 76.6 points (55.5 to 92.0) at two years (p <
0.001). In three hips (11.5%) the construct had migrated at one year after operation. The complications included two dislocations, one infection and one partial palsy of the peroneal nerve. Our findings indicate that treatment of pelvic discontinuity using the component-cage construct is a reliable option.