Advertisement for orthosearch.org.uk
Results 121 - 140 of 1162
Results per page:
Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 723 - 738
4 Oct 2022
Liu Z Shen P Lu C Chou S Tien Y

Aims

Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism.

Methods

Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance.


Bone & Joint 360
Vol. 11, Issue 4 | Pages 41 - 42
1 Aug 2022


Bone & Joint Open
Vol. 5, Issue 6 | Pages 533 - 533
25 Jun 2024
Phelps EE Tutton E Costa ML Achten J Gibson P Perry DC


Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims

We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism.

Methods

Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 1 - 2
1 Mar 2024
Haddad FS Berry DJ


Bone & Joint 360
Vol. 13, Issue 4 | Pages 46 - 46
2 Aug 2024


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1233 - 1234
1 Dec 2023
Haddad FS


Bone & Joint 360
Vol. 13, Issue 3 | Pages 50 - 50
3 Jun 2024


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 1 - 2
1 Jan 2024
Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 585 - 586
17 Apr 2023
Leopold SS Haddad FS Sandell LJ Swiontkowski M


Bone & Joint 360
Vol. 13, Issue 4 | Pages 5 - 6
2 Aug 2024
Ollivere B


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1191 - 1192
1 Nov 2022
Haddad FS


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1296 - 1299
1 Oct 2011
Lang JE Mannava S Floyd AJ Goddard MS Smith BP Mofidi A M. Seyler T Jinnah RH

Robots have been used in surgery since the late 1980s. Orthopaedic surgery began to incorporate robotic technology in 1992, with the introduction of ROBODOC, for the planning and performance of total hip replacement. The use of robotic systems has subsequently increased, with promising short-term radiological outcomes when compared with traditional orthopaedic procedures. Robotic systems can be classified into two categories: autonomous and haptic (or surgeon-guided). Passive surgery systems, which represent a third type of technology, have also been adopted recently by orthopaedic surgeons. While autonomous systems have fallen out of favour, tactile systems with technological improvements have become widely used. Specifically, the use of tactile and passive robotic systems in unicompartmental knee replacement (UKR) has addressed some of the historical mechanisms of failure of non-robotic UKR. These systems assist with increasing the accuracy of the alignment of the components and produce more consistent ligament balance. Short-term improvements in clinical and radiological outcomes have increased the popularity of robot-assisted UKR. Robot-assisted orthopaedic surgery has the potential for improving surgical outcomes. We discuss the different types of robotic systems available for use in orthopaedics and consider the indication, contraindications and limitations of these technologies


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 99 - 100
1 Feb 2023
Birch NC Tsirikos AI


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 3 - 5
1 Jan 2024
Fontalis A Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 422 - 424
1 May 2024
Theologis T Perry DC

In 2017, the British Society for Children’s Orthopaedic Surgery engaged the profession and all relevant stakeholders in two formal research prioritization processes. In this editorial, we describe the impact of this prioritization on funding, and how research in children’s orthopaedics, which was until very recently a largely unfunded and under-investigated area, is now flourishing. Establishing research priorities was a crucial step in this process.

Cite this article: Bone Joint J 2024;106-B(5):422–424.


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1193 - 1195
1 Nov 2022
Rajput V Meek RMD Haddad FS

Periprosthetic joint infection (PJI) remains an extremely challenging complication. We have focused on this issue more over the last decade than previously, but there are still many unanswered questions. We now have a workable definition that everyone should align to, but we need to continue to focus on identifying the organisms involved. Surgical strategies are evolving and care is becoming more patient-centred. There are some good studies under way. There are, however, still numerous problems to resolve, and the challenge of PJI remains a major one for the orthopaedic community. This annotation provides some up-to-date thoughts about where we are, and the way forward. There is still scope for plenty of research in this area.

Cite this article: Bone Joint J 2022;104-B(11):1193–1195.