Advertisement for orthosearch.org.uk
Results 121 - 140 of 195
Results per page:
Bone & Joint Research
Vol. 7, Issue 7 | Pages 485 - 493
1 Jul 2018
Numata Y Kaneuji A Kerboull L Takahashi E Ichiseki T Fukui K Tsujioka J Kawahara N

Objective

Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study.

Methods

Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CT


Bone & Joint Research
Vol. 7, Issue 8 | Pages 524 - 538
1 Aug 2018
Zhao S Arnold M Ma S Abel RL Cobb JP Hansen U Boughton O

Objectives

The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone.

Methods

A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded.


Bone & Joint 360
Vol. 4, Issue 6 | Pages 26 - 27
1 Dec 2015

The December 2015 Children’s orthopaedics Roundup360 looks at: Paediatric femoral fractures: a single incision nailing?; Lateral condylar fractures: open or percutaneous?;

Forearm refracture: the risks; Tibial spine fractures; The child’s knee in MRI; The mechanics of SUFE; Idiopathic clubfoot


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 44 - 49
1 Jan 2018
Berstock JR Whitehouse MR Duncan CP

Aims

To present a surgically relevant update of trunnionosis.

Materials and Methods

Systematic review performed April 2017.


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1496 - 1501
1 Nov 2017
Bali N Aktselis I Ramasamy A Mitchell S Fenton P

Aims

There has been an evolution recently in the management of unstable fractures of the ankle with a trend towards direct fixation of a posterior malleolar fragment. Within these fractures, Haraguchi type 2 fractures extend medially and often cannot be fixed using a standard posterolateral approach. Our aim was to describe the posteromedial approach to address these fractures and to assess its efficacy and safety.

Patients and Methods

We performed a review of 15 patients with a Haraguchi type 2 posterior malleolar fracture which was fixed using a posteromedial approach. Five patients underwent initial temporary spanning external fixation. The outcome was assessed at a median follow-up of 29 months (interquartile range (IQR) 17 to 36) using the Olerud and Molander score and radiographs were assessed for the quality of the reduction.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 415 - 424
1 Apr 2018
Tambe AD Panikkar SJ Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS) is a complex 3D deformity of the spine. Its prevalence is between 2% and 3% in the general population, with almost 10% of patients requiring some form of treatment and up to 0.1% undergoing surgery. The cosmetic aspect of the deformity is the biggest concern to the patient and is often accompanied by psychosocial distress. In addition, severe curves can cause cardiopulmonary distress. With proven benefits from surgery, the aims of treatment are to improve the cosmetic and functional outcomes. Obtaining correction in the coronal plane is not the only important endpoint anymore. With better understanding of spinal biomechanics and the long-term effects of multiplanar imbalance, we now know that sagittal balance is equally, if not more, important. Better correction of deformities has also been facilitated by an improvement in the design of implants and a better understanding of metallurgy. Understanding the unique character of each deformity is important. In addition, using the most appropriate implant and applying all the principles of correction in a bespoke manner is important to achieve optimum correction.

In this article, we review the current concepts in AIS surgery.

Cite this article: Bone Joint J 2018;100-B:415–24.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 973 - 983
1 Jul 2018
Schmal H Froberg L S. Larsen M Südkamp NP Pohlemann T Aghayev E Goodwin Burri K

Aims

The best method of treating unstable pelvic fractures that involve the obturator ring is still a matter for debate. This study compared three methods of treatment: nonoperative, isolated posterior fixation and combined anteroposterior stabilization.

Patients and Methods

The study used data from the German Pelvic Trauma Registry and compared patients undergoing conservative management (n = 2394), surgical treatment (n = 1345) and transpubic surgery, including posterior stabilization (n = 730) with isolated posterior osteosynthesis (n = 405) in non-complex Type B and C fractures that only involved the obturator ring anteriorly. Calculated odds ratios were adjusted for potential confounders. Outcome criteria were intraoperative and general short-term complications, the incidence of nerve injuries, and mortality.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis.

In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone.

We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.


Bone & Joint Research
Vol. 2, Issue 5 | Pages 79 - 83
1 May 2013
Goffin JM Pankaj P Simpson AHRW Seil R Gerich TG

Objectives

Because of the contradictory body of evidence related to the potential benefits of helical blades in trochanteric fracture fixation, we studied the effect of bone compaction resulting from the insertion of a proximal femoral nail anti-rotation (PFNA).

Methods

We developed a subject-specific computational model of a trochanteric fracture (31-A2 in the AO classification) with lack of medial support and varied the bone density to account for variability in bone properties among hip fracture patients.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives

Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain.

Methods

A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 301 - 304
1 Mar 2013
Brennan SA Devitt BM O’Neill CJ Nicholson P

Focal femoral inlay resurfacing has been developed for the treatment of full-thickness chondral defects of the knee. This technique involves implanting a defect-sized metallic or ceramic cap that is anchored to the subchondral bone through a screw or pin. The use of these experimental caps has been advocated in middle-aged patients who have failed non-operative methods or biological repair techniques and are deemed unsuitable for conventional arthroplasty because of their age. This paper outlines the implant design, surgical technique and biomechanical principles underlying their use. Outcomes following implantation in both animal and human studies are also reviewed.

Cite this article: Bone Joint J 2013;95-B:301–4.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 351 - 357
1 May 2017
Takahashi E Kaneuji A Tsuda R Numata Y Ichiseki T Fukui K Kawahara N

Objectives

Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep.

Methods

We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1378 - 1384
1 Oct 2014
Weiser L Korecki MA Sellenschloh K Fensky F Püschel K Morlock MM Rueger JM Lehmann W

It is becoming increasingly common for a patient to have ipsilateral hip and knee replacements. The inter-prosthetic (IP) distance, the distance between the tips of hip and knee prostheses, has been thought to be associated with an increased risk of IP fracture. Small gap distances are generally assumed to act as stress risers, although there is no real biomechanical evidence to support this.

The purpose of this study was to evaluate the influence of IP distance, cortical thickness and bone mineral density on the likelihood of an IP femoral fracture.

A total of 18 human femur specimens were randomised into three groups by bone density and cortical thickness. For each group, a defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing the appropriate lengths of component. The maximum fracture strength was determined using a four-point bending test.

The fracture force of all three groups was similar (p = 0.498). There was a highly significant correlation between the cortical area and the fracture strength (r = 0.804, p <  0.001), whereas bone density showed no influence.

This study suggests that the IP distance has little influence on fracture strength in IP femoral fractures: the thickness of the cortex seems to be the decisive factor.

Cite this article: Bone Joint J 2014;96-B:1378–84.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 435 - 438
1 Apr 2011
Gilbody J

Aseptic loosening of the acetabular component continues to be the most common indication for revision of total hip replacements in younger patients. Early in the evolution of the cemented hip, arthroplasty surgeons switched from removal to retention of the acetabular subchondral bone plate, theorising that unfavourable mechanical forces were the cause of loosening at the bone-cement interface.

It is now known that the cause of aseptic loosening is probably biological rather than mechanical and removing the subchondral bone plate may enhance biological fixation of cement to bone. With this in mind, perhaps it is time to revive removal of the subchondral bone as a standard part of acetabular preparation.


Bone & Joint 360
Vol. 5, Issue 4 | Pages 29 - 31
1 Aug 2016


Bone & Joint Research
Vol. 1, Issue 4 | Pages 56 - 63
1 Apr 2012
Langton DJ Sidaginamale R Lord JK Nargol AVF Joyce TJ

Objectives

An ongoing prospective study to investigate failing metal-on-metal hip prostheses was commenced at our centre in 2008. We report on the results of the analysis of the first consecutive 126 failed mated total hip prostheses from a single manufacturer.

Methods

Analysis was carried out using highly accurate coordinate measuring to calculate volumetric and linear rates of the articular bearing surfaces and also the surfaces of the taper junctions. The relationship between taper wear rates and a number of variables, including bearing diameter and orientation of the acetabular component, was investigated.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 31 - 42
1 Jan 2017
Kang K Koh Y Jung M Nam J Son J Lee Y Kim S Kim S

Objectives

The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions.

Methods

A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered.


Bone & Joint 360
Vol. 1, Issue 6 | Pages 21 - 23
1 Dec 2012

The December 2012 Spine Roundup360 looks at: the Japanese neck disability index; adjacent segment degeneration; sacroiliac loads determined by limb length discrepancy; whether epidural steroids improve outcome in lumbar disc herniation; spondylodiscitis in infancy; total pedicle screws; and iliac crest autograft complications.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 453 - 460
1 Oct 2016
Ernstbrunner L Werthel J Hatta T Thoreson AR Resch H An K Moroder P

Objectives

The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers in vivo. We aimed to biomechanically validate the BSSR, determine whether joint incongruence affects the stability ratio (SR) of a shoulder model, and determine the correct parameters (glenoid concavity versus humeral head radius) for calculation of the BSSR in vivo.

Methods

Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 461 - 467
1 Mar 2010
Wik TS Østbyhaug PO Klaksvik J Aamodt A

The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs.

The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.