Animal studies have shown that implanted anterior cruciate ligament (ACL) grafts initially undergo a process of revascularisation prior to remodelling, ultimately increasing mechanical strength. We investigated whether minimal debridement of the intercondylar notch and the residual stump of the ruptured ACL leads to earlier revascularisation in ACL reconstruction in humans. We undertook a randomised controlled clinical trial in which 49 patients underwent ACL reconstruction using autologous four-strand hamstring tendon grafts. Randomised by the use of sealed envelopes, 25 patients had a conventional clearance of the intercondylar notch and 24 had a minimal debridement method. Three patients were excluded from the study. All patients underwent MR scanning postoperatively at 2, 6 and 12 months, together with clinical assessment using a KT-1000 arthrometer and International Knee Documentation Committee (IKDC) evaluation. All observations were made by investigators blinded to the surgical technique. Signal intensity was measured in 4 mm diameter regions of interest along the ACL graft and the mid-substance of the posterior cruciate ligament. Our results indicate that minimal debridement leads to earlier revascularisation within the mid-substance of the ACL graft at two months (paired
We analysed at a mean follow-up of 7.25 years the clinical and radiological outcome of 117 patients (125 knees) who had undergone a primary, cemented, modular Freeman-Samuelson total knee replacement. While the tibial and femoral components were cemented, the patellar component was uncemented. A surface-cementing technique was used to secure the tibial components. A total of 82 knees was available for radiological assessment. Radiolucent lines were seen in 41 knees (50%) and osteolytic lesions were seen in 13 knees (16%). Asymptomatic, rotational loosening of the patellar implant was seen in four patients and osteolysis was more common in patients with a patellar resurfacing. Functional outcome scores were available for 41 patients (41 knees, 35%) and the mean Western Ontario McMasters Universities score was 77.5 (
We describe the results at five years of a prospective study of a new tri-tapered polished, cannulated, cemented femoral stem implanted in 51 patients (54 hips) with osteoarthritis. The mean age and body mass index of the patients was 74 years and 27.9, respectively. Using the anterolateral approach, half of the stems were implanted by a consultant orthopaedic surgeon and half by six different registrars. There were three withdrawals from the study because of psychiatric illness, a deep infection and a recurrent dislocation. Five deaths occurred prior to five-year follow-up and one patient withdrew from clinical review. In the remaining 51 hips the mean pre-operative Oxford hip score was 47 points which decreased to 19 points at five years (45 hips). Of the stems 49 (98%) were implanted within 1° of neutral in the femoral canal. The mean migration of the stem at five years was 1.9 mm and the survivorship for aseptic loosening was 100%. There was no significant difference in outcome between the consultant and registrar groups. At five years, the results were comparable with those of other polished, tapered, cemented stems. Long-term surveillance continues.
As there is little information on the factors that influence fracture union following intramedullary nailing of the tibia we retrospectively investigated patient-, injury- and treatment-related factors in 161 patients with closed or grade I open fractures of the tibial diaphysis. The patients were reviewed until clinical and radiological evidence of union at a mean of 13.3 months (4 to 60). Multivariate statistical analysis using a Cox proportional hazards model showed that the risk of failure of union increased by 2.38 times for highly comminuted fractures, by 3.14 times when nail dynamisation was applied, and by 1.65 times when the locking screws failed. In fractures with no or only minimal comminution the risk of nonunion increased if the post-reduction gap was ≥ 3 mm.
We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks. The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022). The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.
We investigated 219 revisions of total hip replacement (THR) in 211 patients using a collarless double-taper cemented femoral component. The mean age of the patients was 72 years (30 to 90). The 137 long and 82 standard length stems were analysed separately. The mean follow-up was six years (2 to 18), and no patient was lost to follow-up. Survival of the long stems to re-revision for aseptic loosening at nine years was 98% (95% confidence interval (CI) 94 to 100), and for the standard stems was 93% (95% CI 85 to 100). At five years, one long stem was definitely loose radiologically and one standard stem was probably loose. Pre-operative femoral bone deficiency did not influence the results for the long stems, and corrective femoral osteotomy was avoided, as were significant subsidence, major stress shielding and persistent thigh pain. Because of these reliable results, cemented long collarless double-taper femoral components are recommended for routine revision THR in older patients.
Massive endoprostheses using a cemented intramedullary stem are widely used to allow early resumption of activity after surgery for tumours. The survival of the prosthesis varies with the anatomical site, the type of prosthesis and the mode of fixation. Revision surgery is required in many cases because of aseptic loosening. Insertion of a second cemented endoprosthesis may be difficult because of the poor quality of the remaining bone, and loosening recurs quickly. We describe a series of 14 patients with triplate fixation in difficult revision or joint-sparing tumour surgery with a minimum follow-up of four years. The triplate design incorporated well within a remodelled cortex to achieve osseomechanical integration with all patients regaining their original level of function within five months. Our preliminary results suggest that this technique may provide an easy, biomechanically friendly alternative to insertion of a further device with an intramedullary stem, which has a shorter lifespan in revision or joint-sparing tumour surgery. A short segment of bone remaining after resection of a tumour will not accept an intramedullary stem, but may be soundly fixed using this method.
This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting. Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured. Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum. The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting.
We used three-dimensional movement analysis by computer modelling of knee flexion from 0° to 50° in 14 knees in 12 patients with recurrent patellar dislocation and in 15 knees in ten normal control subjects to compare the The patients had greater values of spin from 20° to 50°, while there were no statistically significant differences in flexion and tilt. The patients also had greater percentage patellar shift from 0° to 50°, percentage tubercle shift at 0° and 10° and patellar inclination from 0° to 50° with a smaller oval-shaped contact area from 20° to 50° moving downwards on the lateral facet. Patellar movement analysis using a three-dimensional computer model is useful to clearly demonstrate differences between patients with recurrent dislocation of the patella and normal control subjects.
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.