Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
We investigated the effect of stimulation with a pulsed electromagnetic field on the osseointegration of hydroxyapatite in cortical bone in rabbits. Implants were inserted into femoral cortical bone and were stimulated for six hours per day for three weeks. Electromagnetic stimulation improved osseointegration of hydroxyapatite compared with animals which did not receive this treatment in terms of direct contact with the bone, the maturity of the bone and mechanical fixation. The highest values of maximum push-out force (Fmax) and ultimate shear strength (σu) were observed in the treated group and differed significantly from those of the control group at three weeks (Fmax; p <
0.0001; σu, p <
0.0005).
This paper outlines the recent development of an exchange Travelling Fellowship scheme between the British and American Orthopaedic Research Societies.
The rate of peri-prosthetic infection following
total joint replacement continues to rise, and attempts to curb
this trend have included the use of antibiotic-loaded bone cement
at the time of primary surgery. We have investigated the clinical-
and cost-effectiveness of the use of antibiotic-loaded cement for
primary total knee replacement (TKR) by comparing the rate of infection
in 3048 TKRs performed without loaded cement over a three-year period The absolute rate of infection increased when antibiotic-loaded
cement was used in TKR. However, this rate of increase was less
than the rate of increase in infection following uncemented THR
during the same period. If the rise in the rate of infection observed
in THR were extrapolated to the TKR cohort, 18 additional cases
of infection would have been expected to occur in the cohort receiving
antibiotic-loaded cement, compared with the number observed. Depending
on the type of antibiotic-loaded cement that is used, its cost in
all primary TKRs ranges between USD $2112.72 and USD $112 606.67
per case of infection that is prevented. Cite this article:
Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient
We investigated the characteristics of patients
who achieved Japanese-style deep flexion (seiza-sitting) after total knee
replacement (TKR) and measured three-dimensional positioning and
the contact positions of the femoral and tibial components. Seiza-sitting
was achieved after surgery by 23 patients (29 knees) of a series
of 463 TKRs in 341 patients. Pre-operatively most of these patients
were capable of seiza-sitting, had a lower body mass index and a favourable
attitude towards the Japanese lifestyle (27 of 29 knees). According
to two-/three-dimensional image registration analysis in the seiza-sitting
position, flexion, varus and internal rotation angles of the tibial
component relative to the femoral component had means of 148° ( Cite this article:
The aim of this study was to evaluate whether
coating titanium discs with selenium in the form of sodium selenite decreased
bacterial adhesion of In order to evaluate bacterial adhesion, sterile titanium discs
were coated with increasing concentrations of selenium and incubated
with bacterial solutions of The tested Selenium coating is a promising method to reduce bacterial attachment
on prosthetic material. Cite this article:
The purpose of this study was to compare the
diagnostic accuracy for the detection of infection between the culture of
fluid obtained by sonication (SFC) and the culture of peri-implant
tissues (PITC) in patients with early and delayed implant failure,
and those with unsuspected and suspected septic failure. It was
hypothesised that SFC increases the diagnostic accuracy for infection
in delayed, but not early, implant failure, and in unsuspected septic
failure. The diagnostic accuracy for infection of all consecutive
implants (hardware or prostheses) that were removed for failure was
compared between SFC and PITC. This prospective study included 317
patients with a mean age of 62.7 years (9 to 97). The sensitivity
for detection of infection using SFC was higher than using PITC
in an overall comparison (89.9% Sonication is mainly recommended when there is implant failure
with no clear signs of infection and in patients with delayed implant
failure. In early failure, SFC is not superior to PITC for the diagnosis
of infection and, therefore, is not recommended as a routine diagnostic
test in these patients. Cite this article:
The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month. The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model.
Following the recall of modular neck hip stems
in July 2012, research into femoral modularity will intensify over
the next few years. This review aims to provide surgeons with an
up-to-date summary of the clinically relevant evidence. The development
of femoral modularity, and a classification system, is described.
The theoretical rationale for modularity is summarised and the clinical
outcomes are explored. The review also examines the clinically relevant problems
reported following the use of femoral stems with a modular neck. Joint replacement registries in the United Kingdom and Australia
have provided data on the failure rates of modular devices but cannot
identify the mechanism of failure. This information is needed to
determine whether modular neck femoral stems will be used in the
future, and how we should monitor patients who already have them implanted. Cite this article:
The April 2012 Research Roundup360 looks at who is capable of being an arthroscopist, bupivacaine, triamcinolone and chondrotoxicity, reducing scarring in injured skeletal muscle, horny Goat Weed and the repair of osseous defects, platelet-derived growth factor and fracture healing, the importance of the reserve zone in a child’s growth plate, coping with advanced arthritis, hydroxyapatite and platelet-rich plasma for bone defects, and calcium phosphate and bone regeneration
Previous research has shown an increase in chromosomal aberrations in patients with worn implants. The type of aberration depended on the type of metal alloy in the prosthesis. We have investigated the metal-specific difference in the level of DNA damage (DNA stand breaks and alkali labile sites) induced by culturing human fibroblasts in synovial fluid retrieved at revision arthroplasty. All six samples from revision cobalt-chromium metal-on-metal and four of six samples from cobalt-chromium metal-on-polyethylene prostheses caused DNA damage. By contrast, none of six samples from revision stainless-steel metal-on-polyethylene prostheses caused significant damage. Samples of cobalt-chromium alloy left to corrode in phosphate-buffered saline also caused DNA damage and this depended on a synergistic effect between the cobalt and chromium ions. Our results further emphasise that epidemiological studies of orthopaedic implants should take account of the type of metal alloy used.
The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism Bovine articular chondrocytes were isolated and seeded into alginate constructs. These were cultured in medium containing hyaluronic acid at varying concentrations. Samples were assayed for biochemical and histological changes. There was a dose-dependent response to the exposure of hyaluronic acid to bovine articular chondrocytes
Patients with infected arthroplasties are normally
treated with a two-stage exchange procedure using polymethylmethacrylate
bone cement spacers impregnated with antibiotics. However, spacers
may act as a foreign body to which micro-organisms may adhere and
grow. In this study it was hypothesised that subclinical infection may
be diagnosed with sonication of the surface biofilm of the spacer.
The aims were to assess the presence of subclinical infection through
sonication of the spacer at the time of a second-stage procedure,
and to determine the relationship between subclinical infection
and the clinical outcome. Of 55 patients studied, 11 (20%) were
diagnosed with subclinical infection. At a mean follow-up of 12
months (interquartile range 6 to 18), clinical failure was found in
18 (32.7%) patients. Of the patients previously diagnosed with subclinical
infection, 63% (7 of 11) had failed compared with 25% (11 of 44)
of those without subclinical infection (odds ratio 5.25, 95% confidence
interval 1.29 to 21.4, p = 0.021). Sonication of the biofilm of
the surface of the spacer is useful in order to exclude subclinical infection
and therefore contributes to improving the outcome after two-stage
procedures.
The success of long-term transcutaneous implants
depends on dermal attachment to prevent downgrowth of the epithelium
and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn)
have independently been shown to regulate fibroblast activity and
improve attachment. In an attempt to enhance this phenomenon we
adsorbed Fn onto HA-coated substrates. Our study was designed to
test the hypothesis that adsorption of Fn onto HA produces a surface
that will increase the attachment of dermal fibroblasts better than
HA alone or titanium alloy controls. Iodinated Fn was used to investigate the durability of the protein
coating and a bioassay using human dermal fibroblasts was performed
to assess the effects of the coating on cell attachment. Cell attachment
data were compared with those for HA alone and titanium alloy controls
at one, four and 24 hours. Protein attachment peaked within one
hour of incubation and the maximum binding efficiency was achieved
with an initial droplet of 1000 ng. We showed that after 24 hours
one-fifth of the initial Fn coating remained on the substrates,
and this resulted in a significant, three-, four-, and sevenfold
increase in dermal fibroblast attachment strength compared to uncoated controls
at one, four and 24 hours, respectively.
We evaluated the maturation of grafted bone in
cases of successful fusion after a one- or two-level posterior lumbar interbody
fusion (PLIF) using interbody carbon cages. We carried out a five-year
prospective longitudinal radiological evaluation of patients using
plain radiographs and CT scans. One year after surgery, 117 patients
with an early successful fusion were selected for inclusion in the
study. Radiological evaluation of interbody bone fusion was graded
on a 4-point scale. The mean grades of all radiological and CT assessments
increased in the five years after surgery, and differences compared
to the previous time interval were statistically significant for
three or four years after surgery. Because the grafted bone continues
to mature for three years after surgery, the success of a fusion
should not be assessed until at least three years have elapsed.
There were no significant differences in the longitudinal patterns
of grafted bone maturity between iliac bone and local bone. However,
iliac bone grafting may remodel faster than local bone.
A silver-containing hydroxyapatite (Ag-HA) coating has been developed using thermal spraying technology. We evaluated the osteoconductivity of this coating on titanium (Ti) implants in rat tibiae in relation to bacterial infection in joint replacement. At 12 weeks, the mean affinity indices of bone formation of a Ti, an HA, a 3%Ag-HA and a 50%Ag-HA coating were 97.3%, 84.9%, 81.0% and 40.5%, respectively. The mean affinity indices of bone contact of these four coatings were 18.8%, 83.7%, 77.2% and 40.5%, respectively. The indices of bone formation and bone contact around the implant of the 3%Ag-HA coating were similar to those of the HA coating, and no significant differences were found between them (bone formation, p = 0.99; bone contact, p = 0.957). However, inhibition of bone formation was observed with the 50%Ag-HA coating. These results indicate that the 3%Ag-HA coating has low toxicity and good osteoconductivity, and that the effect of silver toxicity on osteoconductivity depends on the dose.
This study reports the application of a novel method for quantitatively determining differences in the mechanical properties of healthy and torn rotator cuff tissues. In order to overcome problems of stress risers at the grip-tendon interface that can obscure mechanical measurements of small tendons, we conducted our investigation using dynamic shear analysis. Rotator cuff tendon specimens were obtained from 100 patients during shoulder surgery. They included 82 differently sized tears and 18 matched controls. We subjected biopsy samples of 3 mm in diameter to oscillatory deformation under compression using dynamic shear analysis. The storage modulus (G’) was calculated as an indicator of mechanical integrity. Normal tendons had a significantly higher storage modulus than torn tendons, indicating that torn tendons are mechanically weaker than normal tendons (p = 0.003). Normal tendons had a significantly higher mean shear modulus than tendons with massive tears (p <
0.01). Dynamic shear analysis allows the determination of shear mechanical properties of small tissue specimens obtained intra-operatively that could not be studied by conventional methods of tensile testing. These methods could be employed to investigate other musculoskeletal tissues. This pilot study provides some insight into mechanisms that might contribute to the failure of repair surgery, and with future application could help direct the most appropriate treatment for specific rotator cuff tears.
Two-stage revision surgery for infected total knee replacement offers the highest rate of success for the elimination of infection. The use of articulating antibiotic-laden cement spacers during the first stage to eradicate infection also allows protection of the soft tissues against excessive scarring and stiffness. We have investigated the effect of cyclical loading of cement spacers on the elution of antibiotics. Femoral and tibial spacers containing vancomycin at a constant concentration and tobramycin of varying concentrations were studied The elution of tobramycin increased proportionately with its concentration in cement and was significantly higher at all sampling times from five minutes to 1680 minutes in loaded components compared with the control group (p = 0.021 and p = 0.003, respectively). A similar trend was observed with elution of vancomycin, but this failed to reach statistical significance at five, 1320 and 1560 minutes (p = 0.0508, p = 0.067 and p = 0.347, respectively). However, cyclically loaded and control components showed an increased elution of vancomycin with increasing tobramycin concentration in the specimens, despite all components having the same vancomycin concentration. The concentration of tobramycin influences both tobramycin and vancomycin elution from bone cement. Cyclical loading of the cement spacers enhanced the elution of vancomycin and tobramycin.