Many radiographic techniques have been described for measuring patellar height. They can be divided into two groups: those that relate the position of the patella to the femur (direct) and those that relate it to the tibia (indirect). This article looks at the methods that have been described, the logic behind their conception and the critical analyses that have been performed to test them.
We have developed a new tensor for total knee replacements which is designed to assist with soft-tissue balancing throughout the full range of movement with a reduced patellofemoral joint. Using this tensor in 40 patients with osteoarthritis we compared the intra-operative joint gap in cruciate-retaining and posterior-stabilised total knee replacements at 0°, 10°, 45°, 90° and 135° of flexion, with the patella both everted and reduced. While the measurement of the joint gap with a reduced patella in posterior-stabilised knees increased from extension to flexion, it remained constant for cruciate-retaining joints throughout a full range of movement. The joint gaps at deep knee flexion were significantly smaller for both types of prosthetic knee when the patellofemoral joint was reduced (p <
0.05).
Mechanical failure because of wear or fracture of the polyethylene tibial post in posteriorly-stabilised total knee replacements has been extensively described. In this study of 12 patients with a clinically and radiologically successful NexGen LPS posteriorly-stabilised prosthesis impingement of the anterior tibial post was evaluated in vivo in three dimensions during gait using radiologically-based image-matching techniques. Impingement was observed in all images of the patients during the stance phase, although the NexGen LPS was designed to accommodate 14° of hyperextension of the component before impingement occurred. Impingement arises as a result of posterior translation of the femur during the stance phase. Further attention must therefore be given to the configuration of the anterior portion of the femoral component and the polyethylene post when designing posteriorly-stabilised total knee replacements.
Substantial healthcare resources have been devoted
to computer navigation and patient-specific instrumentation systems
that improve the reproducibility with which neutral mechanical alignment
can be achieved following total knee replacement (TKR). This choice of
alignment is based on the long-held tenet that the alignment of
the limb post-operatively should be within 3° of a neutral mechanical
axis. Several recent studies have demonstrated no significant difference
in survivorship when comparing well aligned Review of the literature suggests that a neutral mechanical axis
remains the optimal guide to alignment. Cite this article:
Radiological assessment of total and unicompartmental
knee replacement remains an essential part of routine care and follow-up.
Appreciation of the various measurements that can be identified
radiologically is important. It is likely that routine plain radiographs
will continue to be used, although there has been a trend towards
using newer technologies such as CT, especially in a failing knee,
where it provides more detailed information, albeit with a higher
radiation exposure. The purpose of this paper is to outline the radiological parameters
used to evaluate knee replacements, describe how these are measured
or classified, and review the current literature to determine their
efficacy where possible.
We undertook this study to determine the minimum
amount of coronoid necessary to stabilise an otherwise intact elbow
joint. Regan–Morrey types II and III, plus medial and lateral oblique
coronoid fractures, collectively termed type IV fractures, were
simulated in nine fresh cadavers. An electromagnetic tracking system
defined the three-dimensional stability of the ulna relative to
the humerus. The coronoid surface area accounts for 59% of the anterior articulation.
Alteration in valgus, internal and external rotation occurred only
with a type III coronoid fracture, accounting for 68% of the coronoid
and 40% of the entire articular surface. A type II fracture removed
42% of the coronoid articulation and 25% of the entire articular
surface but was associated with valgus and external rotational changes
only when the radial head was removed, thereby removing 67% of the
articular surface. We conclude that all type III fractures, as defined here, are
unstable, even with intact ligaments and a radial head. However,
a type II deficiency is stable unless the radial head is removed.
Our study suggests that isolated medial-oblique or lateral-oblique
fractures, and even a type II fracture with intact ligaments and
a functional radial head, can be clinically stable, which is consistent
with clinical observation.
The clinical diagnosis of a partial tear of the
anterior cruciate ligament (ACL) is still subject to debate. Little
is known about the contribution of each ACL bundle during the Lachman
test. We investigated this using six fresh-frozen cadaveric lower
limbs. Screws were placed in the femora and tibiae as fixed landmarks
for digitisation of the bone positions. The femur was secured horizontally
in a clamp. A metal hook was screwed to the tibial tubercle and
used to apply a load of 150 N directed anteroposteriorly to the
tibia to simulate the Lachman test. The knees then received constant
axial compression and 3D knee kinematic data were collected by digitising
the screw head positions in 30° flexion under each test condition.
Measurements of tibial translation and rotation were made, first with
the ACL intact, then after sequential cutting of the ACL bundles,
and finally after complete division of the ACL. Two-way analysis
of variance analysis was performed. During the Lachman test, in all knees and in all test conditions,
lateral tibial translation exceeded that on the medial side. With
an intact ACL, both anterior and lateral tibial landmarks translated
significantly more than those on the medial side (p <
0.001).
With sequential division of the ACL bundles, selective cutting of
the posterolateral bundle (PLB) did not increase translation of
any landmark compared with when the ACL remained intact. Cutting the
anteromedial bundle (AMB) resulted in an increased anterior translation
of all landmarks. Compared to the intact ACL, when the ACL was fully
transected a significant increase in anterior translation of all
landmarks occurred (p <
0.001). However, anterior tibial translation
was almost identical after AMB or complete ACL division. We found that the AMB confers its most significant contribution
to tibial translation during the Lachman test, whereas the PLB has
a negligible effect on anterior translation. Section of the PLB
had a greater effect on increasing the internal rotation of the
tibia than the AMB. However, its contribution of a mean of 2.8°
amplitude remains low. The clinical relevance of our investigation
suggests that, based on anterior tibial translation only, one cannot distinguish
between a full ACL and an isolated AMB tear. Isolated PLB tears
cannot be detected solely by the Lachman test, as this bundle probably
contributes more resistance to the pivot shift.
Complications involving the patellofemoral joint,
caused by malrotation of the femoral component during total knee replacement,
are an important cause of persistent pain and failure leading to
revision surgery. The aim of this study was to determine and quantify
the influence of femoral component malrotation on patellofemoral
wear, and to determine whether or not there is a difference in the
rate of wear of the patellar component when articulated against
oxidised zirconium (OxZr) and cobalt-chrome (CoCr) components. An The results suggest that patellar maltracking due to an internally
rotated femoral component leads to an increased mean patellar wear.
Although not statistically significant, the mean wear production
may be lower for OxZr than for CoCr components.
Abnormal knee kinematics following reconstruction
of the anterior cruciate ligament may exist despite an apparent resolution
of tibial laxity and functional benefit. We performed upright, weight-bearing
MR scans of both knees in the sagittal plane at different angles
of flexion to determine the kinematics of the knee following unilateral reconstruction
(n = 12). The uninjured knee acted as a control. Scans were performed
pre-operatively and at three and six months post-operatively. Anteroposterior
tibial laxity was determined using an arthrometer and patient function
by validated questionnaires before and after reconstruction. In
all the knees with deficient anterior cruciate ligaments, the tibial
plateau was displaced anteriorly and internally rotated relative
to the femur when compared with the control contralateral knee,
particularly in extension and early flexion (mean lateral compartment displacement:
extension 7.9 mm ( Our results show that despite improvement in laxity and functional
benefit, abnormal knee kinematics remain at six months and actually
deteriorate from three to six months following reconstruction of
the anterior cruciate ligament.
Between April 2004 and July 2007, we performed 241 primary total knee replacements in 204 patients using the e.motion posterior cruciate-retaining, multidirectional mobile-bearing prosthesis. Of these, 100 were carried out using an image-free navigation system, and the remaining 141 with the conventional technique. We conducted a retrospective study from the prospectively collected data of these patients to assess the early results of this new mobile-bearing design. At a mean follow-up of 49 months (32 to 71), 18 knees (7.5%) had mechanical complications of which 13 required revision. Three of these had a peri-prosthetic fracture, and were removed from the study. The indication for revision in the remaining ten was loosening of the femoral component in two, tibiofemoral dislocation in three, disassociation of the polyethylene liner in four, and a broken polyethyene liner in one. There were eight further mechanically unstable knees which presented with recurrent disassociation of the polyethylene liner. There was no significant difference in the incidence of mechanical instability between the navigation-assisted procedures (8 of 99, 8.1%) and the conventionally implanted knees (10 of 139, 7.2%). In our view, the relatively high rate of mechanical complications and revision within 30 months precludes the further use of new design of knee replacement.
The shape of the flexion gap in 20 normal knees was evaluated by axial radiography of the distal femur, and the results compared with those obtained in a previous study by MRI. The observed asymmetry was reduced by 29% using radiography, with a mean value of 3.6° (1.5° to 6.3°) compared with that obtained by MRI of 5.1° (2.6° to 9.5°), a mean discrepancy of 1.49°. The results obtained by radiography and MRI showed a strong correlation (r = 0.78). Axial radiography is acceptable for the evaluation of the flexion gap and is less expensive and more comfortable to perform than MRI. Additionally, no metallic artefact occurs when the radiological method is used for assessment after arthroplasty.
One of the most controversial issues in total knee replacement is whether or not to resurface the patella. In order to determine the effects of different designs of femoral component on the conformity of the patellofemoral joint, five different knee prostheses were investigated. These were Low Contact Stress, the Miller-Galante II, the NexGen, the Porous-Coated Anatomic, and the Total Condylar prostheses. Three-dimensional models of the prostheses and a native patella were developed and assessed by computer. The conformity of the curvature of the five different prosthetic femoral components to their corresponding patellar implants and to the native patella at different
Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.
We evaluated 535 consecutive primary cementless total knee replacements (TKR). The mean follow-up was 9.2 years (0.3 to 12.9) and information on implant survival was available for all patients. Patients were divided into two groups: 153 obese patients (BMI ≥ 30) and 382 non-obese (BMI <
30). A case-matched study was performed on the clinical and radiological outcome, comparing 50 knees in each group. We found significantly lower mean improvements in the clinical score (p = 0.044) and lower post-operative total clinical scores in the obese group (p = 0.041). There was no difference in the rate of radiological osteolysis or lucent lines, and no difference in alignment. Log rank test for survival showed no significant differences between the groups (p = 0.167), with a ten-year survival rate of 96.4% (95% confidence interval (CI) 92 to 99) in the obese and 98% (95% CI 96 to 99) in the non-obese. The mid-term survival of TKR in the obese and the non-obese are comparable, but obesity appears to have a negative effect on the clinical outcome. However, good results and high patient satisfaction are still to be expected, and it would seem unreasonable to deny patients a TKR simply on the basis of a BMI indicating obesity.
The Unispacer knee system is a cobalt-chrome self-centring tibial hemiarthroplasty device for use in the treatment of isolated medial compartment osteoarthritis of the knee. The indications for use are similar to those for high tibial osteotomy, but insertion does not require bone cuts or component fixation, and does not compromise future knee replacement surgery. A prospective study of a consecutive series of 18 patients treated with the Unispacer between June 2003 and August 2004 was carried out to determine the early clinical results of this device. The mean age of the patients was 49 years (40 to 57). A total of eight patients (44%) required revision within two years. In two patients revision to a larger spacer was required, and in six conversion to either a unicompartmental or total knee replacement was needed. At the most recent review 12 patients (66.7%) had a Unispacer remaining This study demonstrates that use of the Unispacer in isolated medial compartment osteoarthritis is associated with a high rate of revision surgery and provides unpredictable relief of pain.
We carried out a prospective study to assess the clinical outcome, complications and survival of the NexGen Legacy posterior-stabilised-Flex total knee replacement (TKR) in a consecutive series of 278 knees between May 2003 and February 2005. Mean follow-up for 259 TKRs (98.2%) was 3.8 years (3.0 to 4.8). Annual follow-up showed improvement in the Knee Society scores (paired This relatively large study indicates that the legacy posterior stabilised-Flex design provides excellent short-term outcome but warrants ongoing evaluation to confirm the long-term durability and functioning of the implant.
We have previously developed a radiographic technique, the oblique posterior condylar view, for assessment of the posterior aspect of the femoral condyles after total knee arthroplasty. The purpose of this study was to confirm the validity of this radiographic view based upon intra-operative findings at revision total knee arthroplasty. Lateral and oblique posterior condylar views were performed for 11 knees prior to revision total knee arthroplasty, and radiolucent lines or osteolysis of the posterior aspect of the femoral condyles were identified. These findings were compared with the intra-operative appearance of the posterior aspects of the femoral condyles. Statistical analysis showed that sensitivity and efficacy were significantly better for the oblique posterior condylar than the lateral view. This method can, therefore, be considered as suitable for routine follow-up radiographs of the femoral component and in the pre-operative planning of revision surgery.
We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based navigation system, performed by a single surgeon. The knees were evaluated using full-length weight-bearing anteroposterior radiographs, lateral radiographs and CT scans. The mean hip-knee-ankle angle, coronal femoral component angle and coronal tibial component angle were 181.8° (174.2° to 188.3°), 88.5° (84.0° to 91.8°) and 89.7° (86.3° to 95.1°), respectively for the conventional group and 180.8° (178.2° to 185.1°), 89.3° (85.8° to 92.0°) and 89.9° (88.0° to 93.0°), respectively for the navigated group. The mean sagittal femoral component angle was 85.5° (80.6° to 92.8°) for the conventional group and 89.6° (85.5° to 94.0°) for the navigated group. The mean rotational femoral and tibial component angles were −0.7° (−8.8° to 9.8°) and −3.3° (−16.8° to 5.8°) for the conventional group and −0.6° (−3.5° to 3.0°) and 0.3° (−5.3° to 7.7°) for the navigated group. The ideal angles of all alignments in the navigated group were obtained at significantly higher rates than in the conventional group. Our results demonstrated significant improvements in component positioning with a CT-based navigation system, especially with respect to rotational alignment.
Narrowing of the femoral neck after resurfacing arthroplasty of the hip has been described previously in both cemented and uncemented hip resurfacing. The natural history of narrowing of the femoral neck is unknown. We retrospectively measured the diameter of the femoral neck in a series of 163 Birmingham hip resurfacings in 163 patients up to a maximum of six years after operation to determine the extent and progression of narrowing. There were 105 men and 58 women with a mean age of 52 years (18 to 82). At a mean follow-up of five years, the mean Harris hip score was 94.8 (47 to 100) and the mean flexion of the hip 112.5° (80° to 160°). There was some narrowing of the femoral neck in 77% (125) of the patients reviewed, and in 27.6% (45) the narrowing exceeded 10% of the diameter of the neck. A multiple logistic regression analysis showed a significant association (chi-squared test (derived from logistic regression) p = 0.01) of narrowing with female gender and a valgus femoral neck/shaft angle. There was no significant association between the range of movement, position or size of the component or radiological lucent lines and narrowing of the neck (chi-squared test; p = 0.10 (flexion), p = 0.08 (size of femoral component), p = 0.09 (size of acetabular component), p = 0.71 (femoral component angulation), p = 0.99 (lucent lines)). There was no significant difference between the diameter of the neck at a mean of three years (2.5 to 3.5) and that at five years (4.5 to 5.5), indicating that any change in the diameter of the neck had stabilised by three years (sign rank test, p = 0.60). We conclude that narrowing of the femoral neck which is found with the Birmingham hip resurfacing arthroplasty is in most cases associated with no adverse clinical or radiological outcome up to a maximum of six years after the initial operation.
This study assessed if transfer of the extensor hallucis longus is a valid alternative treatment to split transfer of the tibialis anterior tendon in adult hemiplegic patients without overactivity of the tibialis anterior. One group of 15 patients had overactivity of tibialis anterior in the swing phase, and underwent the split transfer. A further group of 14 patients had no overactivity of tibialis anterior, and underwent transfer of extensor hallucis longus. All patients had lengthening of the tendo Achillis and tenotomies of the toe flexors. All were evaluated clinically and by three-dimensional gait analysis pre- and at one year after surgery. At this time both groups showed significant reduction of disability in walking. Gait speed, stride length and paretic propulsion had improved significantly in both groups. Dorsiflexion in the swing phase, the step length of the healthy limb and the step width improved in both groups, but only reached statistical significance in the patients with transfer of the extensor hallucis longus. There were no differences between the groups at one year after operation. When combined with lengthening of the tendo Achillis, transfer of the extensor hallucis longus can be a valid alternative to split transfer of the tibialis anterior tendon to correct equinovarus foot deformity in patients without overactivity of tibialis anterior.