The purpose of this study was to refine an accepted contaminated
rat femur defect model to result in an infection rate of approximately
50%. This threshold will allow examination of treatments aimed at
reducing infection in open fractures with less risk of type II error. Defects were created in the stablised femurs of anaethetised
rats, contaminated with Objectives
Methods
The June 2013 Research Roundup360 looks at: a contact patch to rim distance and metal ions; the matrix of hypoxic cartilage; CT assessment of early fracture healing; Hawthornes and radiographs; cardiovascular mortality and fragility fractures; and muscle strength decline preceding OA changes.
Symptomatic cobalt toxicity from a failed total
hip replacement is a rare but devastating complication. It has been reported
following revision of fractured ceramic components, as well as in
patients with failed metal-on-metal articulations. Potential clinical
findings include fatigue, weakness, hypothyroidism, cardiomyopathy,
polycythaemia, visual and hearing impairment, cognitive dysfunction,
and neuropathy. We report a case of an otherwise healthy 46-year-old
patient, who developed progressively worsening symptoms of cobalt
toxicity beginning approximately six months following synovectomy
and revision of a fractured ceramic-on-ceramic total hip replacement
to a metal-on-polyethylene bearing. The whole blood cobalt levels
peaked at 6521 µg/l. The patient died from cobalt-induced cardiomyopathy.
Implant retrieval analysis confirmed a loss of 28.3 g mass of the
cobalt–chromium femoral head as a result of severe abrasive wear
by ceramic particles embedded in the revision polyethylene liner.
Autopsy findings were consistent with heavy metal-induced cardiomyopathy. We recommend using new ceramics at revision to minimise the risk
of wear-related cobalt toxicity following breakage of ceramic components. Cite this article:
This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.
Radiological assessment of total and unicompartmental
knee replacement remains an essential part of routine care and follow-up.
Appreciation of the various measurements that can be identified
radiologically is important. It is likely that routine plain radiographs
will continue to be used, although there has been a trend towards
using newer technologies such as CT, especially in a failing knee,
where it provides more detailed information, albeit with a higher
radiation exposure. The purpose of this paper is to outline the radiological parameters
used to evaluate knee replacements, describe how these are measured
or classified, and review the current literature to determine their
efficacy where possible.
We developed a method of applying vibration to the impaction bone grafting process and assessed its effect on the mechanical properties of the impacted graft. Washed morsellised bovine femoral heads were impacted into shear test rings. A range of frequencies of vibration was tested, as measured using an accelerometer housed in a vibration chamber. Each shear test was repeated at four different normal loads to generate stress-strain curves. The Mohr-Coulomb failure envelope from which shear strength and interlocking values are derived was plotted for each test. The experiments were repeated with the addition of blood in order to replicate a saturated environment. Graft impacted with the addition of vibration at all frequencies showed improved shear strength when compared with impaction without vibration, with 60 Hz giving the largest effect. Under saturated conditions the addition of vibration was detrimental to the shear strength of the aggregate. The civil-engineering principles of particulate settlement and interlocking also apply to impaction bone grafting. Although previous studies have shown that vibration may be beneficial in impaction bone grafting on the femoral side, our study suggests that the same is not true in acetabular revision.
Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination. Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy.