Lately, concerns have arisen following the use of large metal-on-metal bearings in hip replacements owing to reports of catastrophic soft-tissue reactions resulting in implant failure and associated complications. This review examines the literature and contemporary presentations on current clinical dilemmas in metal-on-metal hip replacement.
Cementless femoral stems are currently preferred
for total hip replacement (THR) in the United States. Improvements
in stem design, instrumentation and surgical technique have made
this technology highly successful, reproducible, and applicable
to the vast majority of patients requiring a THR. However, there
are ongoing developments in some aspects of stem design that influence
clinical results, the incidence of complications and their inherent adaptability
in accommodating the needs of individual patients. Here we examine
some of these design features. Cite this article:
We compared a modular neck system with a non-modular system in a cementless anatomical total hip replacement (THR). Each group consisted of 74 hips with developmental hip dysplasia. Both groups had the same cementless acetabular component and the same articulation, which consisted of a conventional polyethylene liner and a 28 mm alumina head. The mean follow-up was 14.5 years (13 to 15), at which point there were significant differences in the mean total Harris hip score (modular/non-modular: 98.6 (64 to 100)/93.8 (68 to 100)), the mean range of abduction (32° (15° to 40°)/28 (0° to 40°)), use of a 10° elevated liner (31%/100%), the incidence of osteolysis (27%/79.7%) and the incidence of equal leg lengths (≥ 6 mm, 92%/61%). There was no disassociation or fracture of the modular neck. The modular system reduces the need for an elevated liner, thereby reducing the incidence of osteolysis. It gives a better range of movement and allows the surgeon to make an accurate adjustment of leg length.
Large ceramic femoral heads offer several advantages
that are potentially advantageous to patients undergoing both primary
and revision total hip replacement. Many high-quality studies have
demonstrated the benefit of large femoral heads in reducing post-operative instability.
Ceramic femoral heads may also offer an advantage in reducing polyethylene wear
that has been reported Cite this article: Bone Joint J 2013;95-B, Supple A:63–6.
We undertook a retrospective cohort study to
determine clinical outcomes following the revision of metal-on-metal (MoM)
hip replacements for adverse reaction to metal debris (ARMD), and
to identify predictors of time to revision and outcomes following
revision. Between 1998 and 2012 a total of 64 MoM hips (mean age
at revision of 57.8 years; 46 (72%) female; 46 (72%) hip resurfacings
and 18 (28%) total hip replacements) were revised for ARMD at one specialist
centre. At a mean follow-up of 4.5 years (1.0 to 14.6) from revision
for ARMD there were 13 hips (20.3%) with post-operative complications
and eight (12.5%) requiring re-revision. The Kaplan–Meier five-year survival rate for ARMD revision was
87.9% (95% confidence interval 78.9 to 98.0; 19 hips at risk). Excluding
re-revisions, the median absolute Oxford hip score (OHS) following
ARMD revision using the percentage method (0% best outcome and 100%
worst outcome) was 18.8% (interquartile range (IQR) 7.8% to 48.3%),
which is equivalent to 39/48 (IQR 24.8/48 to 44.3/48) when using
the modified OHS. Histopathological response did not affect time
to revision for ARMD (p = 0.334) or the subsequent risk of re-revision
(p = 0.879). Similarly, the presence or absence of a contralateral
MoM hip bearing did not affect time to revision for ARMD (p = 0.066)
or the subsequent risk of re-revision (p = 0.178). Patients revised to MoM bearings had higher rates of re-revision
(five of 16 MoM hips re-revised; p = 0.046), but those not requiring
re-revision had good functional results (median absolute OHS 14.6%
or 41.0/48). Short-term morbidity following revision for ARMD was
comparable with previous reports. Caution should be exercised when choosing
bearing surfaces for ARMD revisions. Cite this article:
We report the long-term outcome of a modified second-generation cementing technique for fixation of the acetabular component of total hip replacement. An earlier report has shown the superiority of this technique assessed by improved survival compared with first-generation cementing. The acetabular preparation involved reaming only to the subchondral plate, followed by impaction of the bone in the anchorage holes. Between 1978 and 1993, 287 total hip replacements were undertaken in 244 patients with a mean age of 65.3 years (21 to 90) using a hemispherical Weber acetabular component with this modified technique for cementing and a cemented femoral component. The survival with acetabular revision for aseptic loosening as the endpoint was 99.1% (95% confidence interval 97.9 to 100 after ten years and 85.5% (95% confidence interval 74.7 to 96.2) at 20 years. Apart from contributing to a long-lasting fixation of the component, this technique also preserved bone, facilitating revision surgery when necessary.
We present the extended follow-up (≥ 20 years)
of a series of fully hydroxyapatite-coated femoral components used in
72 primary total hip replacements (THRs). Earlier results of this
cohort have been previously published. All procedures were performed
between 1986 and 1991. The series involved 45 women and 15 men with
12 bilateral procedures. Their mean age at the time of surgery was
60 years (46 to 80) and the mean duration of follow-up was 22.5
years (20 to 25). At final follow-up, the mean Merle d’Aubigné and
Postel hip scores were 5.5 (4.5 to 6), 3.8 (3.5 to 5) and 3.3 (3.0
to 5.0) for pain, mobility and function, respectively. Of the patients
92% were very satisfied at the time of final follow-up. There were seven revisions: six of the acetabular component for
aseptic loosening and one of both the stem and the acetabular component
for loosening due to deep infection. The survival of this prosthesis
at 22.5 years with revision for any reason as the endpoint was 91.7%
(95% confidence interval (CI) 84 to 99). Survival with aseptic loosening
of the stem as the endpoint was 100% (95% CI 90 to 100). This prosthesis provides pain relief in the long term. Survival
of this component is comparable to the best results for primary
THR with any means of fixation. Cite this article:
Despite the worldwide usage of the cemented Contemporary
acetabular component (Stryker), no published data are available
regarding its use in patients aged <
50 years. We undertook a
mid- to long-term follow-up study, including all consecutive patients
aged
<
50 years who underwent a primary total hip replacement using
the Contemporary acetabular component with the Exeter cemented stem
between January 1999 and January 2006. There were 152 hips in 126
patients, 61 men and 65 women, mean age at surgery 37.6 years (16
to 49 yrs). One patient was lost to follow-up. Mean clinical follow-up of all implants was 7.6 years (0.9 to
12.0). All clinical questionnaire scores, including Harris hip score,
Oxford hip score and several visual analogue scales, were found
to have improved. The eight year survivorship of all acetabular
components for the endpoints revision for any reason or revision
for aseptic loosening was 94.4% (95% confidence interval (CI) 89.2
to 97.2) and 96.4% (95% CI 91.6 to 98.5), respectively. Radiological follow-up
was complete for 146 implants. The eight year survival for the endpoint
radiological loosening was 93.1% (95% CI 86.2 to 96.6). Three surviving
implants were considered radiologically loose but were asymptomatic.
The presence of acetabular osteolysis (n = 17, 11.8%) and radiolucent
lines (n = 20, 13.9%) in the 144 surviving cups indicates a need
for continued observation in the second decade of follow-up in order
to observe their influence on long-term survival. The clinical and radiological data resulting in a ten-year survival
rate >
90% in young patients support the use of the Contemporary
acetabular component in this specific patient group. Cite this article:
An international faculty of orthopaedic surgeons
presented their work on the current challenges in hip surgery at
the London Hip Meeting which was attended by over
400 delegates. The topics covered included femoroacetabular impingement, thromboembolic
phenomena associated with hip surgery, bearing surfaces (including metal-on-metal
articulations), outcomes of hip replacement surgery and revision
hip replacement. We present a concise report of the current opinions
on hip surgery from this meeting with appropriate references to
the current literature.
Peri-articular soft-tissue masses or ‘pseudotumours’
can occur after large-diameter metal-on-metal (MoM) resurfacing
of the hip and conventional total hip replacement (THR). Our aim
was to assess the incidence of pseudotumour formation and to identify
risk factors for their formation in a prospective cohort study. A total of 119 patients who underwent 120 MoM THRs with large-diameter
femoral heads between January 2005 and November 2007 were included
in the study. Outcome scores, serum metal ion levels, radiographs
and CT scans were obtained. Patients with symptoms or an identified
pseudotumour were offered MRI and an ultrasound-guided biopsy. There were 108 patients (109 hips) eligible for evaluation by
CT scan at a mean follow-up of 3.6 years (2.5 to 4.5); 42 patients
(39%) were diagnosed with a pseudotumour. The hips of 13 patients
(12%) were revised to a polyethylene acetabular component with small-diameter
metal head. Patients with elevated serum metal ion levels had a
four times increased risk of developing a pseudotumour. This study shows a substantially higher incidence of pseudotumour
formation and subsequent revisions in patients with MoM THRs than
previously reported. Because most revision cases were identified
only after an intensive screening protocol, we recommend close monitoring
of patients with MoM THR.
We present a case of early retrieval of an Oxinium femoral head and corresponding polyethylene liner where there was significant surface damage to the head and polyethylene. The implants were retrieved at the time of revision surgery to correct leg-length discrepancy just 48 hours after the primary hip replacement. Appropriate analysis of the retrieved femoral head demonstrated loss of the Oxinium layer with exposure of the underlying substrate and transfer of titanium from the acetabular shell at the time of a reduction of the index total hip replacement. In addition, the level of damage to the polyethylene was extensive despite only 48 hours The purpose of this report is to highlight the care that is required at the time of reduction, especially with these hard femoral counter-faces such as Oxinium. To our knowledge, the damage occurring at the time of reduction has not been previously reported following the retrieval of an otherwise well-functioning hip replacement.
We present the 10- to 17-year results of 112 computer-assisted design computer-assisted manufacture femoral components. The total hip replacements were performed between 1992 and 1998 in 111 patients, comprising 53 men and 58 women. Their mean age was 46.2 years (24.6 to 62.2) with a mean follow-up of 13 years (10 to 17). The mean Harris Hip Score improved from 42.4 (7 to 99) to 90.3 (38 to 100), the mean Oxford Hip Score from 43.1 (12 to 59) to 18.2 (12 to 51) and the mean Western Ontario MacMasters University Osteoarthritis Index score from 57.0 (7 to 96) to 11.9 (0 to 85). There was one revision due to failure of the acetabular component but no failures of the femoral component. There were no revisions for aseptic loosening. The worst-case survival in this cohort of custom femoral components at 13.2 years follow-up was 98.2% (95% confidence interval 95 to 99). Overall survival of this series of total hip replacements was 97.3% (95% confidence interval 95 to 99). These results are comparable with the best medium- to long-term results for femoral components used in primary total hip replacement with any means of fixation.
The removal of well-fixed bone cement from the femoral canal during revision of a total hip replacement (THR) can be difficult and risks the loss of excessive bone stock and perforation or fracture of the femoral shaft. Retaining the cement mantle is attractive, yet the technique of cement-in-cement revision is not widely practised. We have used this procedure at our hospital since 1989. The stems were removed to gain a better exposure for acetabular revision, to alter version or leg length, or for component incompatibility. We studied 136 hips in 134 patients and followed them up for a mean of eight years (5 to 15). A further revision was required in 35 hips (25.7%), for acetabular loosening in 26 (19.1%), sepsis in four, instability in three, femoral fracture in one and stem fracture in one. No femoral stem needed to be re-revised for aseptic loosening. A cement-in-cement revision of the femoral stem is a reliable technique in the medium term. It also reduces the risk of perforation or fracture of the femoral shaft.
Between 1986 and 1991 we implanted 331 consecutive Furlong hydroxyapatite-coated femoral components of a total hip replacement in 291 patients. A cemented acetabular prosthesis was used in 217 hips and a hydroxyapatite-coated component in 114. We describe the long-term clinical and radiological survival of the femoral component at a mean follow-up of 17.5 years (15 to 21). Only two patients (0.68%) were lost to follow-up. With revision of the femoral component for any reason as the endpoint, the survival at a mean of 17 years was 97.4% (95% confidence interval 94.1 to 99.5), and with revision for aseptic loosening as the endpoint it was 100%. The survival at a maximum of 21 years with revision of the femoral component for any reason as the endpoint was 97.4% (95% confidence interval 81.0 or 99.5). These results compare favourably with the best long-term results of cemented or uncemented femoral components used in total hip replacement.
The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal.
The aim of this study was to assess whether a femoral component which retained the neck reduced the incidence of leg-length inequality following total hip arthroplasty. A retrospective review was undertaken of 130 consecutive primary total hip arthroplasties performed between April 1996 and April 2004 using such an implant. There were 102 suitable patients for the study. Standardised pre- and post-operative pelvic radiographs were measured by an independent investigator to the nearest millimetre. The leg-length inequality was reduced from a mean pre-operative value of −0.71 cm to a mean of 0.11 cm post-operatively. Of the 102 patients 24 (23.5%) had an equal leg-length post-operatively, and 95 (93.1%) had a leg-length inequality between −1 cm and 1 cm.
We identified five (2.3%) fractures of the stem in a series of 219 revision procedures using a cementless, cylindrical, extensively porous-coated, distally-fixed femoral stem. Factors relating to the patients, the implant and the operations were compared with those with intact stems. Finite-element analysis was performed on two of the fractured implants. Factors associated with fracture of the stem were poor proximal bone support (type III–type IV; p = 0.001), a body mass index >
30; (p = 0.014), a smaller diameter of stem (<
13.5 mm; p = 0.007) and the use of an extended trochanteric osteotomy (ETO 4/5: p = 0.028). Finite-element analysis showed that the highest stresses on the stem occurred adjacent to the site of the fracture. The use of a strut graft wired over an extended trochanteric osteotomy in patients lacking proximal femoral cortical support decreased the stresses on the stem by 48%. We recommend the use of a strut allograft in conjunction with an extended trochanteric osteotomy in patients with poor proximal femoral bone stock.
We used an inverted shoulder arthroplasty in 43 consecutive patients with a mean age of 78 years (65 to 97) who had sustained a three- or four-part fracture of the upper humerus. All except two were reviewed with a mean follow-up of 22 months (6 to 58). The clinical outcome was satisfactory with a mean active anterior elevation of 97° (35° to 160°) and a mean active external rotation in abduction of 30° (0° to 80°). The mean Constant and the mean modified Constant scores were respectively 44 (16 to 69) and 66% (25% to 97%). Complications included three patients with reflex sympathetic dystrophy, five with neurological complications, most of which resolved, and one with an anterior dislocation. Radiography showed peri-prosthetic calcification in 36 patients (90%), displacement of the tuberosities in 19 (53%) and a scapular notch in ten (25%). Compared with conventional hemiarthroplasty, satisfactory mobility was obtained despite frequent migration of the tuberosities. However, long-term results are required before reverse shoulder arthroplasty can be recommended as a routine procedure in complex fractures of the upper humerus in the elderly.