Flexor hallucis longus (FHL) tendon transfer is a well-recognized
technique in the treatment of the neglected tendo Achillis (TA)
rupture. We report a retrospective review of 20/32 patients who had undergone
transtendinous FHL transfer between 2003 and 2011 for chronic TA
rupture. Their mean age at the time of surgery was 53 years (22
to 83). The mean time from rupture to surgery was seven months (1
to 36). The mean postoperative follow-up was 73 months (29 to 120).
Six patients experienced postoperative wound complications.Aims
Patients and Methods
The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions.Objectives
Methods
Stem cells are defined by their potential for self-renewal and the ability to differentiate into numerous cell types, including cartilage and bone cells. Although basic laboratory studies demonstrate that cell therapies have strong potential for improvement in tissue healing and regeneration, there is little evidence in the scientific literature for many of the available cell formulations that are currently offered to patients. Numerous commercial entities and ‘regenerative medicine centres’ have aggressively marketed unproven cell therapies for a wide range of medical conditions, leading to sometimes indiscriminate use of these treatments, which has added to the confusion and unpredictable outcomes. The significant variability and heterogeneity in cell formulations between different individuals makes it difficult to draw conclusions about efficacy. The ‘minimally manipulated’ preparations derived from bone marrow and adipose tissue that are currently used differ substantially from cells that are processed and prepared under defined laboratory protocols. The term ‘stem cells’ should be reserved for laboratory-purified, culture-expanded cells. The number of cells in uncultured preparations that meet these defined criteria is estimated to be approximately one in 10 000 to 20 000 (0.005% to 0.01%) in native bone marrow and 1 in 2000 in adipose tissue. It is clear that more refined definitions of stem cells are required, as the lumping together of widely diverse progenitor cell types under the umbrella term ‘mesenchymal stem cells’ has created confusion among scientists, clinicians, regulators, and our patients. Validated methods need to be developed to measure and characterize the ‘critical quality attributes’ and biological activity of a specific cell formulation. It is certain that ‘one size does not fit all’ – different cell formulations, dosing schedules, and culturing parameters will likely be required based on the tissue being treated and the desired biological target. As an alternative to the use of exogenous cells, in the future we may be able to stimulate the intrinsic vascular stem cell niche that is known to exist in many tissues. The tremendous potential of cell therapy will only be realized with further basic, translational, and clinical research. Cite this article:
Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries. We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.Objectives
Methods
The purpose of this study was to identify factors associated with limitations in function, measured by patient-reported outcome measures (PROMs), six to nine months after a proximal humeral fracture, from a range of demographic, injury, psychological, and social variables measured within a week and two to four weeks after injury. We enrolled 177 adult patients who sustained an isolated proximal humeral fracture into the study and invited them to complete PROMs at their initial outpatient visit within one week of injury, between two and four weeks, and between six to nine months after injury. There were 128 women and 49 men; the mean age was 66 years (Aims
Patients and Methods
Outcome measures quantifying aspects of health in a precise,
efficient, and user-friendly manner are in demand. Computer adaptive
tests (CATs) may overcome the limitations of established fixed scales
and be more adept at measuring outcomes in trauma. The primary objective
of this review was to gain a comprehensive understanding of the
psychometric properties of CATs compared with fixed-length scales
in the assessment of outcome in patients who have suffered trauma
of the upper limb. Study designs, outcome measures and methodological
quality are defined, along with trends in investigation. A search of multiple electronic databases was undertaken on 1
January 2017 with terms related to “CATs”, “orthopaedics”, “trauma”,
and “anatomical regions”. Studies involving adults suffering trauma
to the upper limb, and undergoing any intervention, were eligible.
Those involving the measurement of outcome with any CATs were included.
Identification, screening, and eligibility were undertaken, followed
by the extraction of data and quality assessment using the Consensus-Based
Standards for the Selection of Health Measurement Instruments (COSMIN) criteria.
The review is reported according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) criteria and reg istered (PROSPERO: CRD42016053886).Aims
Materials and Methods
The incidence of acute and chronic conditions
of the tendo Achillis appear to be increasing. Causation is multifactorial
but the role of inherited genetic elements and the influence of
environmental factors altering gene expression are increasingly
being recognised. Certain individuals’ tendons carry specific variations
of genetic sequence that may make them more susceptible to injury.
Alterations in the structure or relative amounts of the components
of tendon and fine control of activity within the extracellular
matrix affect the response of the tendon to loading with failure
in certain cases. This review summarises present knowledge of the influence of
genetic patterns on the pathology of the tendo Achillis, with a
focus on the possible biological mechanisms by which genetic factors
are involved in the aetiology of tendon pathology. Finally, we assess
potential future developments with both the opportunities and risks
that they may carry. Cite this article:
The October 2013 Research Roundup360 looks at: Orthopaedics: a dangerous profession?; Freezing and biomarkers for bone turnover; Herniation or degeneration first?; MARS MRI and metallosis; Programmed cell death in partial thickness cuff tears; Lead glasses for trauma surgery?; Smoking inhibits bone healing; Optimising polyethylene microstructure.
Arthroscopy of the native hip is an established diagnostic and therapeutic procedure. Its application in the symptomatic replaced hip is still being explored. We describe the use of arthroscopy of the hip in 24 symptomatic patients following total hip replacement, resurfacing arthroplasty of the hip and partial resurfacing (study group), and compared it with arthroscopy of the native hip in 24 patients (control group). A diagnosis was made or confirmed at arthroscopy in 23 of the study group and a therapeutic arthroscopic intervention resulted in relief of symptoms in ten of these. In a further seven patients it led to revision hip replacement. In contrast, arthroscopy in the control group was diagnostic in all 24 patients and the resulting arthroscopic therapeutic intervention provided symptomatic relief in 21. The mean operative time in the study group (59.7 minutes (35 to 93)) was less than in the control group (71 minutes (40 to 100), p = 0.04) but the arthroscopic approach was more difficult in the arthroplasty group. We suggest that arthroscopy has a role in the management of patients with a symptomatic arthroplasty when other investigations have failed to provide a diagnosis.