Advertisement for orthosearch.org.uk
Results 81 - 100 of 823
Results per page:
Bone & Joint Research
Vol. 12, Issue 3 | Pages 189 - 198
7 Mar 2023
Ruiz-Fernández C Ait Eldjoudi D González-Rodríguez M Cordero Barreal A Farrag Y García-Caballero L Lago F Mobasheri A Sakai D Pino J Gualillo O

Aims

CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration.

Methods

We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 91 - 102
1 Feb 2023
Li Z Chen M Wang Z Fan Q Lin Z Tao X Wu J Liu Z Lin R Zhao C

Aims

Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis.

Methods

Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 439 - 448
15 Mar 2023
Hong H Pan X Song J Fang N Yang R Xiang L Wang X Huang C

Aims

The prevalence of scoliosis is not known in patients with idiopathic short stature, and the impact of treatment with recombinant human growth hormone on those with scoliosis remains controversial. We investigated the prevalence of scoliosis radiologically in children with idiopathic short stature, and the impact of treatment with growth hormone in a cross-sectional and retrospective cohort study.

Methods

A total of 2,053 children with idiopathic short stature and 4,106 age- and sex-matched (1:2) children without short stature with available whole-spine radiographs were enrolled in the cross-sectional study. Among them, 1,056 with idiopathic short stature and 790 controls who had radiographs more than twice were recruited to assess the development and progression of scoliosis, and the need for bracing and surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1021 - 1030
1 Sep 2024
Oto J Herranz R Fuertes M Plana E Verger P Baixauli F Amaya JV Medina P

Aims

Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers.

Methods

We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 723 - 738
4 Oct 2022
Liu Z Shen P Lu C Chou S Tien Y

Aims

Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism.

Methods

Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1426 - 1433
1 Oct 2005
Kobayashi T Watanabe H Yanagawa T Tsutsumi S Kayakabe M Shinozaki T Higuchi H Takagishi K

Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the ex vivo expansion medium to avoid the transmission of dangerous transfectants during clinical reconstruction procedures. Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient ex vivo expansion of human bone-marrow mesenchymal stem cells possessing multidifferentiation potential and may be better than fetal bovine serum in preserving high motility


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure. Materials and Methods. A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix). Results. For both plate types, long spans increased IFM but did not substantially alter peak plate stress. The custom plate increased axial and shear IFM values by up to 24% and 47%, respectively, compared with the TomoFix. In all cases, a callus stiffness of 528 MPa was required to reduce plate stress below the fatigue strength of titanium alloy. Conclusion. We demonstrate that larger bridging spans in opening wedge HTO increase IFM without substantially increasing plate stress. The results indicate, however, that callus healing is required to prevent fatigue failure. Cite this article: A. R. MacLeod, G. Serrancoli, B. J. Fregly, A. D. Toms, H. S. Gill. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res 2018;7:639–649. DOI: 10.1302/2046-3758.712.BJR-2018-0035.R1


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 341 - 342
15 Mar 2023
Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 837 - 838
1 Aug 2023
Kelly M McNally SA Dhesi JK


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1434 - 1438
1 Oct 2005
Eckardt H Ding M Lind M Hansen ES Christensen KS Hvid I

The re-establishment of vascularity is an early event in fracture healing; upregulation of angiogenesis may therefore promote the formation of bone. We have investigated the capacity of vascular endothelial growth factor (VEGF) to stimulate the formation of bone in an experimental atrophic nonunion model. Three groups of eight rabbits underwent a standard nonunion operation. This was followed by interfragmentary deposition of 100 μg VEGF, carrier alone or autograft. After seven weeks, torsional failure tests and callus size confirmed that VEGF-treated osteotomies had united whereas the carrier-treated osteotomies failed to unite. The biomechanical properties of the groups treated with VEGF and autograft were identical. There was no difference in bone blood flow. We considered that VEGF stimulated the formation of competent bone in an environment deprived of its normal vascularisation and osteoprogenitor cell supply. It could be used to enhance the healing of fractures predisposed to nonunion


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 522 - 524
1 Jun 2024
Kennedy IW Jones JD Meek RMD


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 221 - 226
1 Mar 2023
Wilton T Skinner JA Haddad FS

Recent publications have drawn attention to the fact that some brands of joint replacement may contain variants which perform significantly worse (or better) than their ‘siblings’. As a result, the National Joint Registry has performed much more detailed analysis on the larger families of knee arthroplasties in order to identify exactly where these differences may be present and may hitherto have remained hidden. The analysis of the Nexgen knee arthroplasty brand identified that some posterior-stabilized combinations have particularly high revision rates for aseptic loosening of the tibia, and consequently a medical device recall has been issued for the Nexgen ‘option’ tibial component which was implicated. More elaborate signal detection is required in order to identify such variation in results in a routine fashion if patients are to be protected from such variation in outcomes between closely related implant types.

Cite this article: Bone Joint J 2023;105-B(3):221–226.


Bone & Joint 360
Vol. 11, Issue 6 | Pages 31 - 34
1 Dec 2022

The December 2022 Shoulder & Elbow Roundup360 looks at: Biceps tenotomy versus soft-tissue tenodesis in females aged 60 years and older with rotator cuff tears; Resistance training combined with corticosteroid injections or tendon needling in patients with lateral elbow tendinopathy; Two-year functional outcomes of completely displaced midshaft clavicle fractures in adolescents; Patients who undergo rotator cuff repair can safely return to driving at two weeks postoperatively; Are two plates better than one? A systematic review of dual plating for acute midshaft clavicle fractures; Treatment of acute distal biceps tendon ruptures; Rotator cuff tendinopathy: disability associated with depression rather than pathology severity; Coonrad-Morrey total elbow arthroplasty implications in young patients with post-traumatic sequelae.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 854 - 861
1 Dec 2022
Park TJ Park SY Cho W Oh H Lee HJ Abd El-Aty AM Bayram C Jeong JH Jung TW

Aims

Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear.

Methods

Human primary tenocytes were cultured in palmitate (400 μM) and palmitate plus DEL-1 (0 to 2 μg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay.


Aims

To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs).

Methods

Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 449 - 454
15 Mar 2023
Zhang C Wang C Duan N Zhou D Ma T

Aims

The aim of this study was to assess the safety and clinical outcome of patients with a femoral shaft fracture and a previous complex post-traumatic femoral malunion who were treated with a clamshell osteotomy and fixation with an intramedullary nail (IMN).

Methods

The study involved a retrospective analysis of 23 patients. All had a previous, operatively managed, femoral shaft fracture with malunion due to hardware failure. They were treated with a clamshell osteotomy between May 2015 and March 2020. The mean age was 42.6 years (26 to 62) and 15 (65.2%) were male. The mean follow-up was 2.3 years (1 to 5). Details from their medical records were analyzed. Clinical outcomes were assessed using the quality of correction of the deformity, functional recovery, the healing time of the fracture, and complications.


Bone & Joint 360
Vol. 13, Issue 5 | Pages 34 - 37
1 Oct 2024

The October 2024 Shoulder & Elbow Roundup360 looks at: Proximal humeral fractures with vascular compromise; Outcomes and challenges of revision arthroscopic rotator cuff repair: a systematic review; Evaluating treatment effectiveness for lateral elbow tendinopathy: a systematic review and network meta-analysis; Tendon transfer techniques for irreparable subscapularis tears: a comparative review; Impact of subscapularis repair in reverse shoulder arthroplasty; Isolated subscapularis tears strongly linked to shoulder pseudoparesis; Nexel and Coonrad-Morrey total elbow arthroplasties show comparable revision rates in New Zealand study; 3D MRI matches 3D CT in assessing bone loss and shoulder morphology in dislocation cases.


Bone & Joint Open
Vol. 6, Issue 1 | Pages 103 - 108
21 Jan 2025
Jabbal M Cherry J Eastwood D Scott CEH Walmsley P Baird E

Aims

Trauma & Orthopaedic (T&O) surgery has come under scrutiny for lagging behind other medical specialties in promoting gender and cultural equity and diversity within their workforce. The proportions of female, ethnic minority, and sexual and gender minority individuals within orthopaedic membership bodies are disproportionate to the populations they serve. The aim of this study is to report the findings of a national workforce survey of demographics and working patterns within T&O in Scotland.

Methods

A questionnaire devised by a working group was delivered by the Client Analyst and Relationship Development (CARD) group. Utilizing a secure third party ensured anonymity for all respondents. Data were recorded and analyzed by the CARD group.