This prospective randomised controlled double-blind
trial compared two types of PFC Sigma total knee replacement (TKR),
differing in three design features aimed at improving flexion. The
outcome of a standard fixed-bearing posterior cruciate ligament-preserving
design (FB-S) was compared with that of a high-flexion rotating-platform
posterior-stabilised design (RP-F) at one year after TKR. The study group of 77 patients with osteoarthritis of the knee
comprised 37 men and 40 women, with a mean age of 69 years (44.9
to 84.9). The patients were randomly allocated either to the FB-S
or the RP-F group and assessed pre-operatively and at one year post-operatively.
The mean post-operative non-weight-bearing flexion was 107° (95%
confidence interval (CI) 104° to 110°)) for the FB-S group and 113°
(95% CI 109° to 117°) for the RP-F group, and this difference was
statistically significant (p = 0.032). However, weight-bearing range
of movement during both level walking and ascending a slope as measured
during flexible electrogoniometry was a mean of 4° lower in the RP-F
group than in the FB-S group, with 58° (95% CI 56° to 60°) Although the RP-F group achieved higher non-weight-bearing knee
flexion, patients in this group did not use this during activities
of daily living and reported more pain one year after surgery
This prospective study compares the outcome of
157 hydroxyapatite (HA)-coated tibial components with 164 cemented
components in the ROCC Rotating Platform total knee replacement
in 291 patients. The mean follow-up was 7.6 years (5.2 to 11). There
were two revisions for loosening: one for an HA-coated and one for
a cemented tibial component. Radiological evaluation demonstrated
no radiolucent lines with the HA-coated femoral components. A total
of three HA-coated tibial components exhibited radiolucent lines
at three months post-operatively and these disappeared after three
further months of protected weight-bearing. With HA-coated components
the operating time was shorter (p <
0.006) and the radiological
assessment of the tibial interface was more stable (p <
0.01).
Using revision for aseptic loosening of the tibial component as
the end point, the survival rates at nine years was identical for
both groups at 99.1%. Our results suggest that HA-coated components perform at least
as well as the same design with cemented components and compare
favourably with those of series describing cemented or porous-coated
knee replacements, suggesting that fixation of both components with
hydroxyapatite is a reliable option in primary total knee replacement.
We have developed a new tensor for total knee replacements which is designed to assist with soft-tissue balancing throughout the full range of movement with a reduced patellofemoral joint. Using this tensor in 40 patients with osteoarthritis we compared the intra-operative joint gap in cruciate-retaining and posterior-stabilised total knee replacements at 0°, 10°, 45°, 90° and 135° of flexion, with the patella both everted and reduced. While the measurement of the joint gap with a reduced patella in posterior-stabilised knees increased from extension to flexion, it remained constant for cruciate-retaining joints throughout a full range of movement. The joint gaps at deep knee flexion were significantly smaller for both types of prosthetic knee when the patellofemoral joint was reduced (p <
0.05).
The cause of dissatisfaction following total
knee arthroplasty (TKA) remains elusive. Much attention has been
focused on static mechanical alignment as a basis for surgical success and
optimising outcomes. More recently, research on both normal and
osteoarthritic knees, as well as kinematically aligned TKAs, has
suggested that other specific and dynamic factors may be more important
than a generic target of 0 ± 3º of a neutral axis. Consideration
of these other variables is necessary to understand ideal targets
and move beyond generic results. Cite this article:
At least four ways have been described to determine
femoral component rotation, and three ways to determine tibial component
rotation in total knee replacement (TKR). Each method has its advocates
and each has an influence on knee kinematics and the ultimate short
and long term success of TKR. Of the four femoral component methods,
the author prefers rotating the femoral component in flexion to
that amount that establishes a stable symmetrical flexion gap. This
judgement is made after the soft tissues of the knee have been balanced
in extension. Of the three tibial component methods, the author prefers rotating
the tibial component into congruency with the established femoral
component rotation with the knee is in extension. This yields a
rotationally congruent articulation during weight-bearing and should
minimise the torsional forces being transferred through a conforming tibial
insert, which could lead to wear to the underside of the tibial
polyethylene. Rotating platform components will compensate for any
mal-rotation, but can still lead to pain if excessive tibial insert
rotation causes soft-tissue impingement. Cite this article:
We have previously reported the short-term radiological
results of a randomised controlled trial comparing kinematically
aligned total knee replacement (TKR) and mechanically aligned TKR,
along with early pain and function scores. In this study we report
the two-year clinical results from this trial. A total of 88 patients
(88 knees) were randomly allocated to undergo either kinematically
aligned TKR using patient-specific guides, or mechanically aligned
TKR using conventional instruments. They were analysed on an intention-to-treat
basis. The patients and the clinical evaluator were blinded to the
method of alignment. At a minimum of two years, all outcomes were better for the kinematically
aligned group, as determined by the mean Oxford knee score (40 (15
to 48) In this study, the use of a kinematic alignment technique performed
with patient-specific guides provided better pain relief and restored
better function and range of movement than the mechanical alignment
technique performed with conventional instruments. Cite this article:
Intra-articular resection of bone with soft-tissue balancing and total knee replacement (TKR) has been described for the treatment of patients with severe osteoarthritis of the knee associated with an ipsilateral malunited femoral fracture. However, the extent to which deformity in the sagittal plane can be corrected has not been addressed. We treated 12 patients with severe arthritis of the knee and an extra-articular malunion of the femur by TKR with intra-articular resection of bone and soft-tissue balancing. The femora had a mean varus deformity of 16° (8° to 23°) in the coronal plane. There were seven recurvatum deformities with a mean angulation of 11° (6° to 15°) and five antecurvatum deformities with a mean angulation of 12° (6° to 15°). The mean follow-up was 93 months (30 to 155). The median Knee Society knee and function scores improved from 18.7 (0 to 49) and 24.5 (10 to 50) points pre-operatively to 93 (83 to 100) and 90 (70 to 100) points at the time of the last follow-up, respectively. The mean mechanical axis of the knee improved from 22.6° of varus (15° to 27° pre-operatively to 1.5° of varus (3° of varus to 2° of valgus) at the last follow-up. The recurvatum deformities improved from a mean of 11° (6° to 15°) pre-operatively to 3° (0° to 6°) at the last follow-up. The antecurvatum deformities in the sagittal plane improved from a mean of 12° (6° to 16°) pre-operatively to 4.4° (0° to 8°) at the last follow-up. Apart from varus deformities, TKR with intra-articular bone resection effectively corrected the extra-articular deformity of the femur in the presence of antecurvatum of up to 16° and recurvatum of up to 15°.
The amount of anteroposterior laxity required for a good range of movement and knee function in a cruciate-retaining total knee replacement (TKR) continues to be debated. We undertook a retrospective study to evaluate the effects of anteroposterior laxity on the range of movement and knee function in 55 patients following the e-motion cruciate-retaining TKR with a minimum follow-up of two years. The knees were divided into stable (anteroposterior translation, ≤ 10 mm, 38 patients) and unstable (anteroposterior translation, >
10 mm, 17) groups based on the anteroposterior laxity, measured using stress radiographs. We compared the Hospital for Special Surgery (HSS) scores, the Western Ontario MacMasters University Osteoarthritis (WOMAC) index, weight-bearing flexion, non-weight-bearing flexion and the reduction of flexion under weight-bearing There were no differences between the stable and unstable groups with regard to the mean HHS and WOMAC total scores, as well as weight-bearing and non-weight-bearing flexion (p = 0.277, p = 0.082, p = 0.095 and p = 0.646, respectively). However, the stable group had a better WOMAC function score and less delta flexion than the unstable group (p = 0.011 and p = 0.005, respectively). Our results suggest that stable knees with laxity ≤ 10 mm have a good functional outcome and less reduction of flexion under weight-bearing conditions than unstable knees with laxity >
10 mm following an e-motion cruciate-retaining TKR.
The aim of this study was to evaluate the risk
factors for dislocation of the bearing after a mobile-bearing Oxford medial
unicompartmental knee replacement (UKR) and to test the hypothesis
that surgical factors, as measured from post-operative radiographs,
are associated with its dislocation From a total of 480 UKRs performed between 2001 and 2012, in
391 patients with a mean age of 66.5 years (45 to 82) (316 female,
75 male), we identified 17 UKRs where bearing dislocation occurred.
The post-operative radiological measurements of the 17 UKRs and
51 matched controls were analysed using conditional logistic regression analysis.
The post-operative radiological measurements included post-operative
change in limb alignment, the position of the femoral and tibial
components, the resection depth of the proximal tibia, and the femoral component-posterior
condyle classification. We concluded that a post-operative decrease in the posterior
tibial slope relative to the pre-operative value was the only significant
determinant of dislocation of the bearing after medial Oxford UKR
(odds ratio 1.881; 95% confidence interval 1.272 to 2.779). A post-operative
posterior tibial slope <
8.45° and a difference between the pre-operative
and post-operative posterior tibial slope of >
2.19° may increase
the risk of dislocation. Cite this article:
Bone loss in the proximal tibia and distal femur
is frequently encountered in revision knee replacement surgery.
The various options for dealing with this depend on the extent of
any bone loss. We present our results with the use of cementless
metaphyseal metal sleeves in 103 patients (104 knees) with a mean
follow-up of 43 months (30 to 65). At final follow-up, sleeves in
102 knees had good osseointegration. Two tibial sleeves were revised
for loosening, possibly due to infection. The average pre-operative Oxford Knee Score was 23 (11 to 36)
and this improved to 32 (15 to 46) post-operatively. These early
results encourage us to continue with the technique and monitor
the outcomes in the long term. Cite this article:
The outcome of total knee replacement (TKR) using
components designed to increase the range of flexion is not fully
understood. The short- to mid-term risk of aseptic revision in high
flexion TKR was evaluated. The endpoint of the study was aseptic
revision and the following variables were investigated: implant
design (high flexion In a cohort of 64 000 TKRs, high flexion components were used
in 8035 (12.5%). The high flexion knees with tibial liners of thickness
>
14 mm had a density of revision of 1.45/100 years of observation,
compared with 0.37/100 in non-high flexion TKR with liners ≤ 14
mm thick. Relative to a standard fixed PS TKR, the NexGen (Zimmer,
Warsaw, Indiana) Gender Specific Female high flexion fixed PS TKR
had an increased risk of revision (hazard ratio (HR) 2.27 (95% confidence
interval (CI) 1.48 to 3.50)), an effect that was magnified when
a thicker tibial insert was used (HR 8.10 (95% CI 4.41 to 14.89)). Surgeons should be cautious when choosing high flexion TKRs,
particularly when thicker tibial liners might be required. Cite this article:
Our aims were to map the tibial footprint of the posterior cruciate ligament (PCL) using MRI in patients undergoing PCL-preserving total knee replacement, and to document the disruption of this footprint as a result of the tibial cut. In 26 consecutive patients plain radiography and MRI of the knee were performed pre-operatively, and plain radiography post-operatively. The lower margin of the PCL footprint was located a mean of 1 mm (−10 to 8) above the upper aspect of the fibular head. The mean surface area was 83 mm2 (49 to 142). One-third of patients (8 of 22) had tibial cuts made below the lowest aspect of the PCL footprint (complete removal) and one-third (9 of 22) had cuts extending into the footprint (partial removal). The remaining patients (5 of 22) had footprints unaffected by the cuts, keeping them intact. Our study highlights the wide variation in the location of the tibial PCL footprint when referenced against the fibula. Proximal tibial cuts using conventional jigs resulted in the removal of a significant portion, if not all of the PCL footprint in most of the patients in our study. Our findings suggest that when performing PCL-retaining total knee replacement the tibial attachment of the PCL is often removed.
We compared the results of 146 patients who received an anatomic modular knee fixed-bearing total knee replacement (TKR) in one knee and a low contact stress rotating platform mobile-bearing TKR in the other. There were 138 women and eight men with a mean age of 69.8 years (42 to 80). The mean follow-up was 13.2 years (11.0 to 14.5). The patients were assessed clinically and radiologically using the rating systems of the Hospital for Special Surgery and the Knee Society at three months, six months, one year, and annually thereafter. The assessment scores of both rating systems pre-operatively and at the final review did not show any statistically significant differences between the two designs of implant. In the anatomic modular knee group, one knee was revised because of aseptic loosening of the tibial component and one because of infection. In addition, three knees were revised because of wear of the polyethylene tibial bearing. In the low contact stress group, two knees were revised because of instability requiring exchange of the polyethylene insert and one because of infection. The radiological analysis found no statistical difference in the incidence of radiolucent lines at the final review (Student’s We found no evidence of the superiority of one design over the other at long-term follow-up.
We conducted a randomised prospective study to evaluate the clinical and radiological results of a mobile- and fixed-bearing total knee replacement of similar design in 174 patients who had bilateral simultaneous knee replacement. The mean follow-up was for 5.6 years (5.2 to 6.1). The total knee score, pain score, functional score and range of movement were not statistically different (p >
0.05) between the two groups. Osteolysis was not seen in any knee in either group. Two knees (1%) in the mobile-bearing group required revision because of infection; none in the fixed-bearing group needed revision. Excellent results can be achieved with both mobile- and fixed-bearing prostheses of similar design at mid-term follow-up. We could demonstrate no significant clinical advantage for a mobile bearing.
The aim of this prospective single-centre study
was to assess the difference in clinical outcome between total knee replacement
(TKR) using computerised navigation and that of conventional TKR.
We hypothesised that navigation would give a better result at every
stage within the first five years. A total of 195 patients (195
knees) with a mean age of 70.0 years (39 to 89) were allocated alternately
into two treatment groups, which used either conventional instrumentation
(group A, 97 knees) or a navigation system (group B, 98 knees).
After five years, complete clinical scores were available for 121
patients (62%). A total of 18 patients were lost to follow-up. Compared
with conventional surgery, navigated TKR resulted in a better mean
Knee Society score (p = 0.008). The difference in mean Knee Society
scores over time between the two groups was not constant (p = 0.006),
which suggests that these groups differed in their response to surgery
with time. No significant difference in the frequency of malalignment
was seen between the two groups. In summary, computerised navigation resulted in a better functional
outcome at five years than conventional techniques. Given the similarity
in mechanical alignment between the two groups, rotational alignment
may prove to be a better method of identifying differences in clinical
outcome after navigated surgery.
Between April 2004 and July 2007, we performed 241 primary total knee replacements in 204 patients using the e.motion posterior cruciate-retaining, multidirectional mobile-bearing prosthesis. Of these, 100 were carried out using an image-free navigation system, and the remaining 141 with the conventional technique. We conducted a retrospective study from the prospectively collected data of these patients to assess the early results of this new mobile-bearing design. At a mean follow-up of 49 months (32 to 71), 18 knees (7.5%) had mechanical complications of which 13 required revision. Three of these had a peri-prosthetic fracture, and were removed from the study. The indication for revision in the remaining ten was loosening of the femoral component in two, tibiofemoral dislocation in three, disassociation of the polyethylene liner in four, and a broken polyethyene liner in one. There were eight further mechanically unstable knees which presented with recurrent disassociation of the polyethylene liner. There was no significant difference in the incidence of mechanical instability between the navigation-assisted procedures (8 of 99, 8.1%) and the conventionally implanted knees (10 of 139, 7.2%). In our view, the relatively high rate of mechanical complications and revision within 30 months precludes the further use of new design of knee replacement.
We reviewed the rate of revision of unicompartmental knee replacements (UKR) from the New Zealand Joint Registry between 1999 and 2008. There were 4284 UKRs, of which 236 required revision, 205 to a total knee replacement (U2T) and 31 to a further unicompartmental knee replacement (U2U). We used these data to establish whether the survival and functional outcome for revised UKRs were comparable with those of primary total knee replacement (TKR). The rate of revision for the U2T cohort was four times higher than that for a primary TKR (1.97 The poor outcome of a UKR converted to a primary TKR compared with a primary TKR should contra-indicate the use of a UKR as a more conservative procedure in the younger patient.
We have studied the concept of posterior condylar offset and the importance of its restoration on the maximum range of knee flexion after posterior-cruciate-ligament-retaining total knee replacement (TKR). We measured the difference in the posterior condylar offset before and one year after operation in 69 patients who had undergone a primary cruciate-sacrificing mobile bearing TKR by one surgeon using the same implant and a standardised operating technique. In all the patients true pre- and post-operative lateral radiographs had been taken. The mean pre- and post-operative posterior condylar offset was 25.9 mm (21 to 35) and 26.9 mm (21 to 34), respectively. The mean difference in posterior condylar offset was + 1 mm (−6 to +5). The mean pre-operative knee flexion was 111° (62° to 146°) and at one year postoperatively, it was 107° (51° to 137°). There was no statistical correlation between the change in knee flexion and the difference in the posterior condylar offset after TKR (Pearson correlation coefficient r = −0.06, p = 0.69).
We describe the survivorship of the Medial Rotation total knee replacement (TKR) at ten years in 228 cemented primary replacements implanted between October 1994 and October 2006, with their clinical and radiological outcome. This implant has a highly congruent medial compartment, with the femoral component represented by a portion of a sphere which articulates with a matched concave surface on the medial side of the tibial insert. There were 78 men (17 bilateral TKRs) and 111 women (22 bilateral TKRs) with a mean age of 67.9 years (28 to 90). All the patients were assessed clinically and radiologically using the American Knee Society scoring systems. The mean follow-up was for six years (1 to 13) with only two patients lost to follow-up and 34 dying during the period of study, one of whom had required revision for infection. There were 11 revisions performed in total, three for aseptic loosening, six for infection, one for a periprosthetic fracture and one for a painful but well-fixed replacement performed at another centre. With revision for any cause as the endpoint, the survival at ten years was 94.5% (95% CI 85.1 to 100), and with aseptic loosening as the endpoint 98.4% (95% CI 93 to 100). The mean American Knee Society score improved from 47.6 (0 to 88) to 72.2 (26 to 100) and for function from 45.1 (0 to 100) to 93.1 (45 to 100). Radiological review failed to detect migration in any of the surviving knees. The clinical and radiological results of the Medial Rotation TKR are satisfactory at ten years. The increased congruence of the medial compartment has not led to an increased rate of loosening and continued use can be supported.
Evaluation of patients with painful total knee replacement requires a thorough clinical examination and relevant investigations in order to reach a diagnosis. Awareness of the common and uncommon problems leading to painful total knee replacement is useful in the diagnostic approach. This review article aims to act as a guide to the evaluation of patients with painful total knee replacement.