Substantial healthcare resources have been devoted
to computer navigation and patient-specific instrumentation systems
that improve the reproducibility with which neutral mechanical alignment
can be achieved following total knee replacement (TKR). This choice of
alignment is based on the long-held tenet that the alignment of
the limb post-operatively should be within 3° of a neutral mechanical
axis. Several recent studies have demonstrated no significant difference
in survivorship when comparing well aligned Review of the literature suggests that a neutral mechanical axis
remains the optimal guide to alignment. Cite this article:
We aimed to obtain anthropometric data on Korean
knees and to compare these with data on commonly available total
knee arthroplasties (TKAs). The dimensions of the femora and tibiae
of 1168 knees were measured intra-operatively. The femoral components
were found to show a tendency toward mediolateral (ML) under-coverage
in small femurs and ML overhang in the large femurs. The ML under-coverage
was most prominent for the small prostheses. The ML/anteroposterior
(ML/AP) ratio of Korean tibiae was greater than that of tibial components. This study shows that, for different reasons, current TKAs do
not provide a reasonable fit for small or large Korean knees, and
that the ‘gender-specific’ and ‘stature-specific’ components help
for large Korean femurs but offer less satisfactory fits for small
femurs. Specific modifications of prostheses are needed for Asian
knees.
We performed a randomised controlled trial comparing
computer-assisted surgery (CAS) with conventional surgery (CONV)
in total knee replacement (TKR). Between 2009 and 2011 a total of
192 patients with a mean age of 68 years (55 to 85) with osteoarthritis
or arthritic disease of the knee were recruited from four Norwegian
hospitals. At three months follow-up, functional results were marginally
better for the CAS group. Mean differences (MD) in favour of CAS
were found for the Knee Society function score (MD: 5.9, 95% confidence
interval (CI) 0.3 to 11.4, p = 0.039), the Knee Injury and Osteoarthritis
Outcome Score (KOOS) subscales for ‘pain’ (MD: 7.7, 95% CI 1.7 to
13.6, p = 0.012), ‘sports’ (MD: 13.5, 95% CI 5.6 to 21.4, p = 0.001)
and ‘quality of life’ (MD: 7.2, 95% CI 0.1 to 14.3, p = 0.046).
At one-year follow-up, differences favouring CAS were found for
KOOS ‘sports’ (MD: 11.0, 95% CI 3.0 to 19.0, p = 0.007) and KOOS
‘symptoms’ (MD: 6.7, 95% CI 0.5 to 13.0, p = 0.035). The use of
CAS resulted in fewer outliers in frontal alignment (>
3° malalignment),
both for the entire TKR (37.9% Cite this article:
Component malalignment can be associated with
pain following total knee replacement (TKR). Using MRI, we reviewed
50 patients with painful TKRs and compared them with a group of
16 asymptomatic controls to determine the feasibility of using MRI
in evaluating the rotational alignment of the components. Using
the additional soft-tissue detail provided by this modality, we
also evaluated the extent of synovitis within these two groups.
Angular measurements were based on the femoral transepicondylar
axis and tibial tubercle. Between two observers, there was very
high interobserver agreement in the measurements of all values.
Patients with painful TKRs demonstrated statistically significant
relative internal rotation of the femoral component (p = 0.030).
There was relative internal rotation of the tibial to femoral component
and combined excessive internal rotation of the components in symptomatic
knees, although these results were significant only with one of
the observers (p = 0.031). There was a statistically significant
association between the presence and severity of synovitis and painful
TKR (p <
0.001). MRI is an effective modality in evaluating component rotational
alignment.
The objective of this study was to compare the early migration
characteristics and functional outcome of the Triathlon cemented
knee prosthesis with its predecessor, the Duracon cemented knee
prosthesis (both Stryker). A total 60 patients were prospectively randomised and tibial
component migration was measured by radiostereometric analysis (RSA)
at three months, one year and two years; clinical outcome was measured
by the American Knee Society score and the Knee Osteoarthritis and
Injury Outcome Score.Objectives
Methods
Intra-articular resection of bone with soft-tissue balancing and total knee replacement (TKR) has been described for the treatment of patients with severe osteoarthritis of the knee associated with an ipsilateral malunited femoral fracture. However, the extent to which deformity in the sagittal plane can be corrected has not been addressed. We treated 12 patients with severe arthritis of the knee and an extra-articular malunion of the femur by TKR with intra-articular resection of bone and soft-tissue balancing. The femora had a mean varus deformity of 16° (8° to 23°) in the coronal plane. There were seven recurvatum deformities with a mean angulation of 11° (6° to 15°) and five antecurvatum deformities with a mean angulation of 12° (6° to 15°). The mean follow-up was 93 months (30 to 155). The median Knee Society knee and function scores improved from 18.7 (0 to 49) and 24.5 (10 to 50) points pre-operatively to 93 (83 to 100) and 90 (70 to 100) points at the time of the last follow-up, respectively. The mean mechanical axis of the knee improved from 22.6° of varus (15° to 27° pre-operatively to 1.5° of varus (3° of varus to 2° of valgus) at the last follow-up. The recurvatum deformities improved from a mean of 11° (6° to 15°) pre-operatively to 3° (0° to 6°) at the last follow-up. The antecurvatum deformities in the sagittal plane improved from a mean of 12° (6° to 16°) pre-operatively to 4.4° (0° to 8°) at the last follow-up. Apart from varus deformities, TKR with intra-articular bone resection effectively corrected the extra-articular deformity of the femur in the presence of antecurvatum of up to 16° and recurvatum of up to 15°.
We undertook a study in which 138 female patients with a mean age of 71.2 years (51 to 82) received a standard NexGen CR-flex prosthesis in one knee and a gender-specific NexGen CR-flex prosthesis in the other. The mean follow-up period was 3.25 years (3.1 to 3.5). The aspect ratios of the standard and gender-specific prostheses were compared with that of the distal femur. The mean post-operative Knee Society knee scores were 94 (70 to 100) and 93 (70 to 100) points and the function scores were 83 (60 to 100) and 84 (60 to 100) points for the standard implants and the gender-specific designs, respectively. The mean post-operative Western Ontario and McMaster Universities score was 26.4 points (0 to 76). Patient satisfaction, the radiological results and the complication rates were similar in the two groups. In those with a standard prosthesis, the femoral component was closely matched in 80 knees (58.0%), overhung in 14 (10.1%) and undercovered the bone in 44 (31.9%). In those with a gender-specific prosthesis, it was closely matched in 15 knees (10.9%) and undercovered the bone in 123 (89.1%). Since we found no significant differences between the two groups with regard to the clinical and radiological results, patient satisfaction or complication rate, the goal of the design of the gender-specific CR-flex prosthesis to improve the outcome was not achieved in our patients.
The rotational alignment of the tibia is an unresolved issue in knee replacement. A poor functional outcome may be due to malrotation of the tibial component. Our aim was to find a reliable method for positioning the tibial component in knee replacement. CT scans of 19 knees were reconstructed in three dimensions and orientated vertically. An axial plane was identified 20 mm below the tibial spines. The centre of each tibial condyle was calculated from ten points taken round the condylar cortex. The tibial tubercle centre was also generated as the centre of the circle which best fitted eight points on the outside of the tubercle in an axial plane at the level of its most prominent point. The derived points were identified by three observers with errors of 0.6 mm to 1 mm. The medial and lateral tibial centres were constant features (radius 24 mm ( Alignment of the knee when based on this anatomical axis was more reliable than either the posterior surfaces or any axis involving the tubercle which was the least reliable landmark in the region.
The appearance of the ‘grand-piano sign’ on the anterior resected surface of the femur has been considered to be a marker for correct femoral rotational alignment during total knee replacement. Our study was undertaken to assess quantitatively the morphological patterns on the resected surface after anterior femoral resection with various angles of external rotation, using a computer-simulation technique. A total of 50 right distal femora with varus osteoarthritis in 50 Korean patients were scanned using computerised tomography. Computer image software was used to simulate the anterior femoral cut, which was applied at an external rotation of 0°, 3° and 6° relative to the posterior condylar axis, and parallel to the surgical and clinical epicondylar axes in each case. The morphological patterns on the resected surface were quantified and classified as the ‘grand-piano sign’, ‘the boot sign’ and the ‘butterfly sign’. The surgeon can use the analogy of these quantified sign patterns to ensure that a correct rotational alignment has been obtained intra-operatively.
Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics