Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant. Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1–34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters. These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks.
In 2004 we described the ten-year prospective results of 38 total hip replacements using the Furlong hydroxyapatite-ceramic-coated femoral component in 35 patients <
50 years old. We have now reviewed the surviving 35 arthroplasties in 33 patients at a mean of 16 years (10.3 to 19.9). The mean age of the surviving patients at the time of operation was 41.3 years (26.0 to 49.0). Of these, eight have undergone revision of their acetabular component for aseptic loosening. None of the femoral components has had revision for aseptic loosening giving a survival rate of 100% at 16 years (95% confidence interval 89% to 100%). The Furlong hydroxyapatite-ceramic-coated femoral component gives excellent long-term survival in young and active patients.
Inflammatory markers such as the C-reactive protein (CRP), white blood cell count and body temperature are easy to measure and are used as indicators of infection. The way in which they change in the early post-operative period after instrumented spinal surgery has not been reported in any depth. We measured these markers pre-operatively and at one, four, seven and 14 days postoperatively in 143 patients who had undergone an instrumented posterior lumbar interbody fusion. The CRP proved to be the only sensitive marker and had returned to its normal level in 48% of patients after 14 days. The CRP on day 7 was never higher than that on day 4. Age, gender, body temperature, operating time and blood loss were not related to the CRP level. A high CRP does not in itself suggest infection, but any increase after four days may presage infection.
Between 1986 and 1991 we implanted 331 consecutive Furlong hydroxyapatite-coated femoral components of a total hip replacement in 291 patients. A cemented acetabular prosthesis was used in 217 hips and a hydroxyapatite-coated component in 114. We describe the long-term clinical and radiological survival of the femoral component at a mean follow-up of 17.5 years (15 to 21). Only two patients (0.68%) were lost to follow-up. With revision of the femoral component for any reason as the endpoint, the survival at a mean of 17 years was 97.4% (95% confidence interval 94.1 to 99.5), and with revision for aseptic loosening as the endpoint it was 100%. The survival at a maximum of 21 years with revision of the femoral component for any reason as the endpoint was 97.4% (95% confidence interval 81.0 or 99.5). These results compare favourably with the best long-term results of cemented or uncemented femoral components used in total hip replacement.
We describe three cases of fracture of the titanium JRI-Furlong hydroxyapatite-ceramic (HAC)-coated femoral component. We have examined previous case reports of failure of this stem and conclude that fracture may occur in two places, namely at the neck-shoulder junction and at the conical-distal cylindrical junction. These breakages are the result of fatigue in a metallurgically-proven normal femoral component. All the cases of failure of the femoral component have occurred in patients with a body mass index of more than 25 in whom a small component, either size 9 or 10, had been used. In patients with a body mass index above normal size 9 components should be avoided and the femoral canal should be reamed sufficiently to accept a large femoral component to ensure that there is adequate metaphyseal fixation.
We have reviewed 42 patients who had revision of metal-on-metal resurfacing procedures, mostly because of problems with the acetabular component. The revisions were carried out a mean of 26.2 months (1 to 76) after the initial operation and most of the patients (30) were female. Malpositioning of the acetabular component resulted in 27 revisions, mostly because of excessive abduction (mean 69.9°; 56° to 98°) or insufficient or excessive anteversion. Seven patients had more than one reason for revision. The mean increase in the diameter of the component was 1.8 mm (0 to 4) when exchange was needed. Malpositioning of the components was associated with metallosis and a high level of serum ions. The results of revision of the femoral component to a component with a modular head were excellent, but four patients had dislocation after revision and four required a further revision.
Bone allografts can be used in any kind of surgery involving bone from minor defects to major bone loss after tumour resection. This review describes the various types of bone grafts and the current knowledge on bone allografts, from procurement and preparation to implantation. The surgical conditions for optimising the incorporation of bone are outlined, and surgeon expectations from a bone allograft discussed.
We describe the results of a randomised, prospective study of 200 ankle replacements carried out between March 2000 and July 2003 at a single centre to compare the Buechel-Pappas (BP) and the Scandinavian Total Ankle Replacement (STAR) implant with a minimum follow-up of 36 months. The two prostheses were similar in design consisting of three components with a meniscal polyethylene bearing which was highly congruent on its planar tibial surface and on its curved talar surface. However, the designs were markedly different with respect to the geometry of the articular surface of the talus and its overall shape. A total of 16 ankles (18%) was revised, of which 12 were from the BP group and four of the STAR group. The six-year survivorship of the BP design was 79% (95% confidence interval (CI) 63.4 to 88.5 and of the STAR 95% (95% CI 87.2 to 98.1). The difference did not reach statistical significance (p = 0.09). However, varus or valgus deformity before surgery did have a significant effect) (p = 0.02) on survivorship in both groups, with the likelihood of revision being directly proportional to the size of the angular deformity. Our findings support previous studies which suggested that total ankle replacement should be undertaken with extreme caution in the presence of marked varus or valgus deformity.