Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article:
The role of vacuum mixing on the reduction of porosity and on the clinical performance of cemented total hip replacements remains uncertain. We have used paired femoral constructs prepared with either hand-mixed or vacuum-mixed cement in a cadaver model which simulated intra-operative conditions during cementing of the femoral component. After the cement had cured, the distribution of its porosity was determined, as was the strength of the cement-stem and cement-bone interfaces. The overall fraction of the pore area was similar for both hand-mixed and vacuum-mixed cement (hand 6%; vacuum 5.7%; paired
We carried out lacerations of 50%, followed by trimming, in ten turkey flexor tendons We concluded that trimming partially lacerated flexor tendons will reduce the gliding resistance at the tendon-pulley interface, but will lead to fragmentation and triggering of the tendon at higher degrees of flexion and loading. We recommend that higher degrees of flexion be avoided during early post-operative rehabilitation following trimming of a flexor tendon.
We describe the clinical outcome of a technique of surgical augmentation of chronic massive tears of the rotator cuff using a polyester ligament (Dacron) in 21 symptomatic patients (14 men, seven women) with a mean age of 66.5 years (55.0 to 85.0). All patients had MRI and arthroscopic evidence of chronic massive tears. The clinical outcome was assessed using the Constant and Murley and patient satisfaction scores at a mean follow-up of 36 months (30 to 46). The polyester ligament (500 mm × 10 mm) was passed into the joint via the portal of Neviaser, medial to the tear through healthy cuff. The two ends of the ligament holding the cuff were passed through tunnels made in the proximal humerus at the footprint of the insertion of the cuff. The ligament was tied with a triple knot over the humeral cortex. All the patients remained free from pain (p <
0.001) with improvement in function (p <
0.001) and range of movement (p <
0.001). The mean pre-operative and post-operative Constant scores were 46.7 (39.0 to 61.0) and 85.4 (52.0 to 96.0), respectively (p <
0.001). The mean patient satisfaction score was 90%. There were two failures, one due to a ruptured ligament after one year and the other due to deep-seated infection. The MR scan at the final follow-up confirmed intact and thickened bands in 15 of 17 patients. This technique of augmentation gives consistent relief from pain with improved shoulder movement in patients with symptomatic massive tears of the rotator cuff.
We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis. FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm−1 to 1200 cm−1), collagen (1300 cm−1 to 1700 cm−1 and 3000 cm−1 to 3350 cm−1) and lipids (2800 cm−1 to 3000 cm−1). Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair.
An experimental rabbit model was used to test the null hypothesis,
that there is no difference in new bone formation around uncoated
titanium discs compared with coated titanium discs when implanted
into the muscles of rabbits. A total of three titanium discs with different surface and coating
(1, porous coating; 2, porous coating + Bonemaster (Biomet); and
3, porous coating + plasma-sprayed hydroxyapatite) were implanted
in 12 female rabbits. Six animals were killed after six weeks and
the remaining six were killed after 12 weeks. The implants with
surrounding tissues were embedded in methyl methacrylate and grinded
sections were stained with Masson-Goldners trichrome and examined
by light microscopy of coded sections.Objectives
Methods
We compared time-dependent changes in the biomechanical properties of single-and double-row repair of a simulated acute tear of the rotator cuff in rabbits to determine the effect of the fixation techniques on the healing process. A tear of the supraspinatus tendon was created in 80 rabbits which were separated into two equal groups. A single-row repair with two suture anchors was conducted in group 1 and a double-row repair with four suture anchors in group 2. A total of ten intact contralateral shoulder joints was used as a control group. Biomechanical testing was performed immediately post-operatively and at four and eight weeks, and histological analysis at four and eight weeks. The mean load to failure in group 2 animals was greater than in group 1, but both groups remained lower than the control group at all intervals. Histological analysis showed similar healing properties at four and eight weeks in both groups, but a significantly larger number of healed tendon-bone interfaces were identified in group 2 than in group 1 at eight weeks (p <
0.012). The ultimate load to failure increased with the number of suture anchors used immediately post-operatively, and at four and eight weeks. The increased load to failure at eight weeks seemed to be related to the increase in the surface area of healed tendon-to-bone in the double-row repair group.
The Swansea Morriston Achilles Rupture Treatment
(SMART) programme was introduced in 2008. This paper summarises
the outcome of this programme. Patients with a rupture of the Achilles
tendon treated in our unit follow a comprehensive management protocol
that includes a dedicated Achilles clinic, ultrasound examination,
the use of functional orthoses, early weight-bearing, an accelerated
exercise regime and guidelines for return to work and sport. The
choice of conservative or surgical treatment was based on ultrasound
findings. The rate of re-rupture, the outcome using the Achilles Tendon
Total Rupture Score (ATRS) and the Achilles Tendon Repair Score,
(AS), and the complications were recorded. An elementary cost analysis
was also performed. Between 2008 and 2014 a total of 273 patients presented with
an acute rupture 211 of whom were managed conservatively and 62
had surgical repair. There were three
re-ruptures (1.1%). There were 215 men and 58 women with a mean
age of 46.5 years (20 to 86). Functional outcome was satisfactory.
Mean ATRS and AS at four months was 53.0
( The SMART programme resulted in a low rate of re-rupture, a satisfactory
outcome, a reduced rate of surgical intervention and a reduction
in healthcare costs. Cite this article:
The purpose of this study was to evaluate A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted
subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm
PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight
and 12 weeks post-implantation were compared with control (Sham)
and PLAGA (five rats per group/point in time). Rats were observed
for signs of morbidity, overt toxicity, weight gain and food consumption,
while haematology, urinalysis and histopathology were completed
when the animals were killed.Objectives
Methods
The April 2014 Wrist &
Hand Roundup360 looks at: diagnosis of compressive neuropathy; relevant reviews; the biomechanics of dorsal PIP fracture dislocation; the more strands the better; and state of mind the best predictor of outcome.
The June 2014 Wrist &
Hand Roundup360 looks at: aart throwing not quite as we thought; two-gear, four-bar linkage in the wrist?; assessing outcomes in distal radial fractures; gold standard Swanson’s?; multistrand repairs of unclear benefit in flexor tendon release; for goodness’ sake, leave the thumb alone in scaphoid fractures; horizons in carpal tunnel surgery; treading the Essex-Lopresti tightrope; wrist replacement in trauma? and radial shortening reliable in the long term for Kienbock’s disease
Although many clinical and experimental investigations have shed
light on muscle atrophy and intramuscular accumulation of fat after
rotator cuff disruption, none have reported on their onset in the
absence of muscle retraction. In 30 rabbits, we detached one supraspinatus (SSP) tendon and
repaired it immediately, thus preventing muscle retraction. The
animals were killed in groups of 10 at one, two and six weeks. Both
shoulders of 15 non-operated rabbits served as controls. We measured
the weight and volume of SSP muscles and quantified the cross-sectional
area of intramuscular fat (i-fat) histologically.Objectives
Methods
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
In a prospective, randomised study on the repair of tears of the rotator cuff we compared the clinical results of two suture techniques for which different suture materials were used. We prospectively randomised 100 patients with tears of the rotator cuff into two groups. Group 1 had transosseous repair with No. 3 Ethibond using modified Mason-Allen sutures and group 2 had transosseous repair with 1.0 mm polydioxanone cord using modified Kessler sutures. After 24 to 30 months the patients were evaluated clinically using the Constant score and by ultrasonography. Of the 100 patients, 92 completed the study. No significant statistical difference was seen between the two groups: Constant score, 91% Overall, seven patients had complications which required revision surgery, in four for pain (two in each group) and in three for infection (two in group 1 and one in group 2).
The period of post-operative treatment before surgical wounds
are completely closed remains a key window, during which one can
apply new technologies that can minimise complications. One such
technology is the use of negative pressure wound therapy to manage
and accelerate healing of the closed incisional wound (incisional
NPWT). We undertook a literature review of this emerging indication
to identify evidence within orthopaedic surgery and other surgical
disciplines. Literature that supports our current understanding
of the mechanisms of action was also reviewed in detail. Objectives
Methods
Rupture of the tendo Achillis is a common injury
with a rising incidence. Traditionally the key question following
this injury has been whether or not to operate. However a contemporary
Cochrane review highlighted that the method of rehabilitation may
also have an important contribution to the outcome. Since this review,
various early weight-bearing rehabilitation protocols have been
described. Currently evidence points to the use of early functional
rehabilitation, regardless of operative or non-operative management.
However, there is no consensus on which exact functional rehabilitation
protocol should be used. Future research should be directed towards
improving our understanding of how the different rehabilitative
components interact in the tendo Achillis as it heals.
High-flexion total knee replacement (TKR) designs
have been introduced to improve flexion after TKR. Although the
early results of such designs were promising, recent literature
has raised concerns about the incidence of early loosening of the
femoral component. We compared the minimum force required to cause
femoral component loosening for six high-flexion and six conventional
TKR designs in a laboratory experiment. Each TKR design was implanted in a femoral bone model and placed
in a loading frame in 135° of flexion. Loosening of the femoral
component was induced by moving the tibial component at a constant
rate of displacement while maintaining the same angle of flexion.
A stereophotogrammetric system registered the relative movement
between the femoral component and the underlying bone until loosening
occurred. Compared with high-flexion designs, conventional TKR designs
required a significantly higher force before loosening occurred
(p <
0.001). High-flexion designs with closed box geometry required
significantly higher loosening forces than high-flexion designs
with open box geometry (p = 0.0478). The presence of pegs further contributed
to the fixation strength of components. We conclude that high-flexion designs have a greater risk for
femoral component loosening than conventional TKR designs. We believe
this is attributable to the absence of femoral load sharing between
the prosthetic component and the condylar bone during flexion.
This study reports the application of a novel method for quantitatively determining differences in the mechanical properties of healthy and torn rotator cuff tissues. In order to overcome problems of stress risers at the grip-tendon interface that can obscure mechanical measurements of small tendons, we conducted our investigation using dynamic shear analysis. Rotator cuff tendon specimens were obtained from 100 patients during shoulder surgery. They included 82 differently sized tears and 18 matched controls. We subjected biopsy samples of 3 mm in diameter to oscillatory deformation under compression using dynamic shear analysis. The storage modulus (G’) was calculated as an indicator of mechanical integrity. Normal tendons had a significantly higher storage modulus than torn tendons, indicating that torn tendons are mechanically weaker than normal tendons (p = 0.003). Normal tendons had a significantly higher mean shear modulus than tendons with massive tears (p <
0.01). Dynamic shear analysis allows the determination of shear mechanical properties of small tissue specimens obtained intra-operatively that could not be studied by conventional methods of tensile testing. These methods could be employed to investigate other musculoskeletal tissues. This pilot study provides some insight into mechanisms that might contribute to the failure of repair surgery, and with future application could help direct the most appropriate treatment for specific rotator cuff tears.
We split 100 porcine flexor tendons into five groups of 20 tendons for repair. Three groups were repaired using the Pennington modified Kessler technique, the cruciate or the Savage technique, one using one new device per tendon and the other with two new devices per tendon. Half of the tendons received supplemental circumferential Silfverskiöld type B cross-stitch. The repairs were loaded to failure and a record made of their bulk, the force required to produce a 3 mm gap, the maximum force applied before failure and the stiffness. When only one device was used repairs were equivalent to the Pennington modified Kessler for all parameters except the force to produce a 3 mm gap when supplemented with a circumferential repair, which was equivalent to the cruciate. When two devices were used the repair strength was equivalent to the cruciate repair, and when the two-device repair was supplemented with a circumferential suture the force to produce a 3 mm gap was equivalent to that of the Savage six-strand technique.
Using an osteotomy of the olecranon as a model of a transverse fracture in 22 cadaver elbows we determined the ability of three different types of suture and stainless steel wire to maintain reduction when using a tension-band technique to stabilise the bone. Physiological cyclical loading simulating passive elbow movement (15 N) and using the arms to push up from a chair (450 N) were applied using an Instron materials testing machine whilst monitoring the osteotomy site with a video extensometer. Each osteotomy was repaired by one of four materials, namely, Stainless Steel Wire (7), No 2 Ethibond (3), No 5 Ethibond (5), or No 2 FiberWire (7). There were no failures (movement of >
2 mm) with stainless steel wire or FiberWire and no significant difference in the movements measured across the site of the osteotomy (p = 0.99). The No. 2 Ethibond failed at 450 N and two of the five of No. 5 Ethibond sutures had a separation of >
2 mm at 450 N. FiberWire as the tension band in this model held the reduction as effectively as stainless steel wire and may reduce the incidence of discomfort from the hardware. On the basis of our findings we suggest that a clinical trial should be undertaken